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Abstract

A model for nondegenerate optical parametric oscillation in a continuous-wave singly resonant frequency doubler is
presented. General expressions for the stationary state properties, such as threshold and conversion efficiency are derived for
arbitrary focusing and arbitrary second-harmonic generation as well as parametric generation wavevector mismatches
Ak, AK. For large Ak, where the SHG efficiency decreases roughly as |Ak|™?, the oscillation threshold increases roughly
linearly with |A|. Substantial conversion efficiencies for the generation of signal and idler powers are predicted for cavities
with good escape efficiency. Further salient features are optical limiting of the harmonic output at zero wavevector
mismatches and parametric generation-induced second-harmonic generation when AkL = 27 N. The quantum properties of
the system are a special case of the doubly-resonant frequency doubler discussed by Marte [Phys. Rev. Lett. 74 (1995)
4815]: the system is predicted to be a source of highly quantum correlated signal and idler waves (twin beams).

PACS: 42.65.Ky
Kevwords: Harmonic generation; Frequency conversion

1. Introduction and overview

Externally resonant frequency conversion plays an increasingly important role in extending the spectral range of
single-frequency continuous-wave lasers, as well as for the generation of nonclassical states of light and quantum
measurements. Of the nonlinear optical processes used, the simplest one is singly-resonant second-harmonic generation
(SHG), in which a subharmonic wave (w,) is resonantly enhanced in an optical cavity (Fig. 1) [1]. The resulting high
circulating power leads to high external conversion efficiency for the generation of a harmonic wave (2w,); values as high
as 89% have been reached [2—4]. A frequency doubler also represents a simple and reliable source of bright squeezed light:
the harmonic wave generated through singly-resonant SHG is squeezed in the amplitude quantum noise [5-7].

The apparently simple process of singly-resonant SHG is surprisingly rich in possible effects and the present paper is
devoted to a detailed discussion of some of them. As an overview, Fig. 2 shows a phase diagram of some possible behavior
of a plane-wave resonant frequency doubler as a function of the two parameters usually under control of the experimenter,
the subharmonic input power and the SHG wavevector mismatch Ak = k(2 w,) — 2k(w,). For the standard use as a
harmonic generator, the characteristic input power scale is P~, where, for fixed input mirror transmission, the conversion
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Fig. 1. Schematic of a subharmonic pumped parametric oscillator (SPO). A resonant subharmonic wave (full line) generates a harmonic
wave (2w, dashed) which in turn generates resonant signal o, and idler @, waves (dashed). The harmonic wave is not resonant. The four
waves are shown not overlapping for clarity.

efficiency is maximum °. P" scales as sinc” >(AkL/2), being minimum at zero wavevector mismatch, the preferred
operation point.

If at AkL = 0 the input power is increased beyond P * (with the input mirror transmission still fixed), the nonresonant
harmonic field generated in the nonlinear medium is large enough to provide a gain for a nondegenerate signal /idler mode
pair. If it exceeds their cavity losses parametric oscillation can set in. This process is termed subharmonic-pumped
parametric oscillation (SPO) since it converts photons of frequency w, to photons of frequencies w, and w, through the
intermediary of the harmonic wave 2w,. Subharmonic-pumped parametric oscillation in singly-resonant SHG was first
observed in a monolithic MgO:LiNbO; resonator pumped by a Nd:YAG laser [8,9]. Subsequently, a tunable, frequency-sta-
ble and efficient SPO has been demonstrated using a semi-monolithic resonator [10]. Recently, also the quantum properties
of the harmonic wave in the SPO regime have been studied [11]. SPO can also occur in doubly-resonant frequency doublers,
with a much smaller threshold, and has been demonstrated earlier {12].

The threshold power for SPO is an important issue. With increasing |A k| one expects an increasing threshold, since the
generated harmonic power decreases. This indeed occurs in the limit of large |A kLl as shown in Fig. 2. However, there is no
direct connection between SHG efficiency and SPO threshold. Indeed, a noteworthy feature appears: the occurrence of SPO
even at values where the external SHG efficiency vanishes (AkL = 27N for weak focusing). This is due to the presence of
sufficient harmonic power within the nonlinear medium to drive the oscillation.

The domain of nonzero wavevector mismatch also harbors cascaded second-order nonlinear effects [13]. These lead to
Kerr-like nonlinear phase shifts for the subharmonic wave, which may develop into optical bistability [14]. The correspond-
ing power scale, calculated under the assumption that SPO is suppressed in some way (for example, due to large signal and
idler detunings, or signal and idler cavity losses sufficiently higher than the subharmonic loss) is shown in Fig. 2. The
nonlinear phase shifts are also relevant below this power scale and must be considered in determining the properties of SPO.

In this paper we present a theoretical model for the SPO (Section 2) which complements the discussion of some basic
characteristics of the SPO given earlier [9]. In Section 3, we provide expressions for the threshold power and the conversion
efficiency, taking into account focusing of the resonator modes, wavevector mismatch of both the second-harmonic and
parametric generation processes and thus nonlinear phase shift effects. A theoretical overview of the quantum properties of
the device is presented in Section 4, with the purpose of evaluating effects of SPO on the quantum noise reduction studied in
recent SHG experiments {5-7,11] and to verify the ability of SPO to serve as a source of quantum correlated waves (twin
beams) [15].

2. Classical description of SPO
2.1. The system

Fig. 1 shows a schematic of the nonlinear system to be discussed in this work. The input subharmonic wave is injected
into a cavity where it generates a nonresonant harmonic wave. The latter can act as a pump wave for nondegenerate
oscillation (signal and idler frequencies w, HE w,) if its average power along the crystal length is high enough.

The important physical distinction between SPO and usual OPO is that even at threshold the pump (2 @, ) wave amplitude
is not constant along the nonlinear medium, but spatially dependent, because it is generated internally from the circulating

3 P . . . o I . . .
" Note that maximization of conversion efficiency via input coupler transmission at fixed input power yields a different result as
compared to the maximization via input power at fixed input coupler transmission.
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Fig. 2. Phase diagram for externally resonant SHG. The SPO threshold power is P,‘{‘,n(A kL,LAK =0). P*(Ak) is the input (w,) power at

which the SHG conversion efficiency is maximum. The threshold for optical bistability due to cascaded second-order nonlinearity is
calculated using Ref. [14]

fundamental wave. The spatial dependence of the pump wave is therefore a function of the SHG wavevector mismatch Ak.
This is one ingredient that will be taken into account in the calculations below. We also consider an arbitrary wavevector
mismatch AK = k(2 w) — k(w,) — k(w,) for the nondegenerate parametric process. The inclusion of both Ak and Ak
effects allows the derivation of important properties of the SPO, such as the temperature dependence of its threshold and
output wavelengths.

A quarititative description of the SPO requires the evolution equations of the amplitudes of the electric fields within the
nonlinear medium. Since, to our knowledge, equations that take into account arbitrary focusing of the modes do not appear
to be widely known or used, we present here an explicit derivation.

2.2. Derivation of equations of propagation for general focusing

In this section we solve Maxwell’s equations for wave propagation in the presence of a nonlinear polarization Py, .

Walk-off effects are not considered. A wave of frequency w whose electric field E is along the direction of an index axis
satisfies the wave equation

2

. no .
(B:‘+8;+6_‘?')E—FE=;LOPNL, )]

where P, is the contribution to the nonlinear polarization oscillating at the same frequency as E, n is the index of
refraction at the frequency o, c is the speed of light in vacuum, and p, is the vacuum magnetic permeability. Let the

propagation direction be along positive z, z,, being the position of the focus (not necessarily within the nonlinear medium).
We express the fields as

E=Re(e " E(x,y,2)), Py =Re(e™ " Py(x.,y,2)), (2)

with the envelopes E, Py, and k =nw/c. Applying the slowly varying envelope approximation, 19> E| < k[d. El, we
obtain the paraxial equation

i . iwpye
2 2 _
(a:+ 2k(ax +a\.))5- 5 P 3)

The electric field envelope is now expanded in terms of the complete set of orthonormal cylindrical TEM,,,,, modes ¢,
[18],

. @
E(x.y.2) =1/ = LAnl(2) Yl 5,5.2) )
n mn i
where the basis modes with waist parameter w and beam waist position z, are solutions of the source-free equation

(6:+2Lk(6_3+é\.2))¢,,,,,=0. (3
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Note that the above expansion uses a z-dependent basis. The mode expansion coefficients are

Ap(2)=Vn/w [Ey, dx dy (6)

2

and depend on : only. The optical power in a mode is given by @ |A,,,I>/2cu,, 50 |A,,,|
the photon number rate.
The paraxial equation (3) can be solved by introducing the Green function [16,17]

is scaled to be proportional to

G(x,y,:)=ZI—:Zexp(—;—};(x2+y2)) 0(z), (7
where @(z) is the step function. G satisfies the wave equation
(a_+—'—(az+a§))c=53(x). (8)
Tk b
With the help of G, the electric field generated by the nonlinear polarization is found as
E(x)= - '“’Z“OC J6(x—x) Pu(x) &x'. 9)

We now focus our attention on the expansion coefficients A, , of the field. They satisfy the differential equation

mn

dAm"(z) i[.LoC w .
dz 2 V n fPNL(xvva)lll,:,,(x,)',;) dxdy. (10)

This represents the important basic relation which will be specialized below. It can be derived by inserting Eg. (9) into
Eq. (6), expressing 9. in terms of the paraxial operator d. + i(8? + 97)/2k, using Egs. (5) and (8) and performing a partial
integration of 97 + 8.

We turn now to the application of Eq. (10) to the SPO. The four waves of relevance here are taken to be the TEM,y,
modes, so we introduce the short-hand A for the coefficients A, labeled by 1, 2, s, i. j will be used as a general index.
The focusing of the resonant waves (1,s i) is defined by the geometry of the common resonator. Consequently, these waves
have identical Rayleigh ranges z, =k, w; 2 /2, where w; are the respective beam waist sizes entering the Gaussians iy,
Since the harmonic is generated from the subharmonic TEM, it has a waist \/-— times smaller and thus also the same
Rayleigh range z.. The foci of all waves are also at the same location z,,.

Following Boyd and Kleinman [16], we introduce new variables for the frequencies and indices of refraction,
o,=w,{1+7), o,=0,1—-7), n,=n,(1+{), n,=n,(1—{). In the following we first consider the interaction
between signal, idler and the 2 @, sum frequency waves, which will then be specialized to degenerate interaction between
fundamental and second harmonic.

The nonlinear polarizations for sum frequency generation (SFG) and parametric generation are

ﬁNL.2=BEOdEsE~ieiAK:7 ﬁNL.s/l 260‘157 N em e, (11)

where d is the nonlinear coefficient and AK =k(2w,) — k(w,) — k(w,) is the phase mismatch. From x'* tensor

summation, 8=2 or B=1 for nondegenerate (w;, w, < 2w,) and for degenerate (w, <> 2w,) operation, respectively.
Performing the integration on the r.h.s of Eq. (10) we obtain

dA,(z) B dA, . . .

T i 8(ng) w(AK.2) A(2) A(2), P —ig(m{)u (AK.2) Ax(2) A, (2),  (12)
d(l);l ]_nl id:

gn)=—F—=—""— u(8.z) = (13)

—i(z—z)/z

The function g represents the gain, while u results form the overlap integral of three ¢, functions with different waists. It
describes the influence of wavevector mismatch and focusing. When the waves are weakly focused (near-field case) u(8,z)
reduces to exp(i8z). We have assumed operation sufficiently close to phase matching A K = 0 so that the harmonic index
may be approximated by n,=n,(1 + n¢). It is interesting to note that for SFG there is only gain for the TEM, sum
frequency mode, whereas the parametric gain affects many modes: the modematch of the generated field to the TEM,, mode
is 75% for degenerate operation; i.e. 25% of the gain is distributed among non-TEM,-modes.

Eqgs. (12) are specialized for degenerate interaction by substituting 8=1, =0, {=0,s — 1, i — 1. Note that a
different phase mismatch AK — Ak = k(2 @,) — 2k(w,) results. For the following discussion, the notation is simplified by
introducing the gain coefficients g = g(n,¢), g, = £(0,0).

nyclmwz, 1+n¢
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Adding the effects of degenerate and nondegenerate nonlinear interaction, the following propagation equations for the

SPO result:
dA(2)
iz = —igou” (Ak,2) A7 (2) Ax(2).
dA,(z 5
D) B0 (ak0) A2 (MK A A). (14)
dA, (z
—d;"(_)= —igu”(AK,z) A{,i(2) Ax(2). (15)

In this work we will find that the most relevant situation is near-degenerate operation, where g = g,. We shall however keep
the distinction between the two gain coefficients (i) to be able to identify quickly the interaction that leads to a particular
coupling term in the equations of motion of the fields (see below) and (ii) because Eqs. (14) and (15) in this general form
can be applied also to nonlinear media (notably quasi-phasematched materials) where even for near-degenerate interactions
the w, @ 2w, and w,;, o, < 2w, gains are distinct due to distinct nonlinear coefficients d.

With minor changes in notation *, special cases of Egs. (14) and (15) have been employed to describe cascaded x*
effects in wavevector-mismatched SHG [14] and doubly-resonant parametric oscillation [19].

2.3. Field propagation in the SPO

With the nonlinear medium enclosed in a high-finesse cavity, the amplitudes of signal, idler, and subharmonic will be
nearly constant along the medium. We can therefore solve the propagation equations (14) and (15) in the mean field
approximation by iterative integration to second order in the nonlinearities g, and g, similar to the approach by Lugiato et
al. [20]. We start by integrating the equation for the harmonic wave,

A,(L) —A,(0) = —i(%L)I(Ak) A(0)’ — igLI(AK) A(0) A,(0). (16)

A,(0) is the harmonic amplitude present at the input of the nonlinear medium. It is zero for the SPO but is considered here in
view of the discussion of the quantum properties of the SPO. The coupling function / is defined by

L
1(8) = ["u(8,2)dz/L. (17)
0
We insert the result (16) into the propagation equations for the fundamental and signal /idler waves and obtain,

A(L)-A((0)=—- %AI(O)_igOLI*(Ak) A7 (0) A,(0)

gOng B gng 2
- 5 C(Ak,AK)A,(0) A (0) A, (0)— D(AK)| A, (0)" A\(0), (18)
a, , L ) .
Ai(L)= A,(0) = = —5A(0) = igLI(AK) ™ 4, (0)" 4,(0)
gOng C * 2 gl ? 2
—| = | C(akaK) A, (0)7 A4,(0) - D(AK)IA,, (O A,,(0).  (19)

In these equations we have added the effect of propagation losses (power loss coefficients a, ,, ,, with al < 1). By
assumption, the right hand sides of Egs. (18) and (19) are small. There is no such restriction on the right hand side of Eq.
(16), however. The dimensionless coupling functions appearing in Egs. (18) and (19) are

2 N
C(a..az)=§f0Ljou*(a.,:)u(52,z')d:' dz,  D(8)=C(5,5). (20)

* The amplitudes A; in Ref. [14] are v’2 / 7TW,-2 times the amplitudes A; used here. This gives rise to a factor 1/2 in the equation for
dA, /dz in Eq. (1) of Ref. [14]. The cavity fields « used in Refs. [14,19] are based on this different normalization and thus differ from the
fields o defined in this work. The functions X, D in Ref. [19] are denoted by /{AK) and D(AK), respectively, here. The functions B and
A in Ref. [8] are denoted by I(Ak) and D(Ak) here. The functions / and K in Ref. [14] are denoted by /{Ak) and D(Ak) here.
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Fig. 3. (a) The self- and cross-interaction coupling function D. Plane-wave focusing assumed. (b) The parametric gain function C. The
maximum is at A KL= AkL.

General relationships between these coupling functions can be easily derived by invoking overall energy conservation: the
power balance between input powers at z =0 and output powers at z = L yields

Re D(8) =11(8)°, C(8,.8,)+C(5,.8,) =21(8,) 1(5,). (21)

For the special case of vanishing wavevector mismatches, AkL = AkL = 0, and plane-wave focusing, the coupling functions
simply reduce to unity, /I=D=C=1.

What are the meanings of the coupling functions? |I(Ak)|* and |I/(AK)|* are the normalized nonlinear coefficients for
SHG and sum frequency generation, respectively. For plane-wave focusing, these are the well-known sinc?(AL/2) and
sinc>(A KL /2) functions. For general focusing, |/|* is related to the familiar Boyd-Kleinman factor 4 by |I|* =2z h/L.
D(Ak) and D(AK) are the loss and self-phase shift coefficients due to harmonic and sum-frequency generation
(w; + w, = 2 w,), respectively. Fig. 3a is a plot of D(8). The real part corresponds to the loss coefficient and the imaginary
part to an effective Kerr phase shift coefficient, which occurs for nonzero phase mismatch.

C(Ak,AK) and C(AK,Ak) are the gain coefficients for subharmonic and parametric generation, respectively. The latter
plays a central role for SPO. We can gain a qualitative understanding of the occurrence of SPO by considering the gain for
signal and idler waves. From Eq. (15), we see that it is proportional to the spatially varying function u*(AK,z) A,(2).
According to Eq. (14), the harmonic amplitude itself is given, below or at threshold, by A,(z) ~ [ju{Ak,2')dz’, since
A((2) is essentially constant. Thus, the gain coefficient integrated over the entire medium is just L>C(A K,Ak): it appears as
the third term in Eq. (19). The crucial point is that C is nonzero for any wavevector mismatche. Fig. 3b shows the
dependence of |C(AK,Ak)| on the two phase mismatches. |C| exhibits relative maxima on the “‘ridges’” AkL =0 and
A KL = AkL along which it decreases as 1/|AkL| for large AkL. Below we will find that the SPO threshold has relative
minima on these ridges.

The parametric gain is also proportional to the circulating subharmonic power A2. It is known from the behaviour of a
resonant frequency doubler that this power grows monotonically with input subharmonic power, independent of Ak (as long
as A, = 0). The gain will thus eventually exceed the loss of signal /idler and parametric oscillation will then set in. We
conclude that the threshold for SPO is eventually reached for any value of wavevector mismatch.
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Fig. 4. Spatial dependence of (a) the harmonic field generated by SHG and (b) the ensuing parametric gain, for vaiues of wavevector
mismatches where |C| is large. Full lines: real parts, dashed lines: imaginary parts.

As concrete examples, Figs. 4a and 4b show the harmonic field amplitude and the parametric gain coefficient,
respectively, for three cases. Under perfect SHG phasematching, Ak = 0, the harmonic generation efficiency is maximum,
A, grows linearly, and the average harmonic field in the crystal is one-half the output field. In the case of vanishing external
harmonic conversion efficiency, e.g. at AkL = 27, the harmonic amplitude first grows and then is converted back to the
fundamental wave, resulting in zero harmonic output at the end of the medium A,(L) = 0. However, in both cases A,(z) is
nonzero within the crystal. The spatial dependence of the gain coefficient, Fig. 4b leads to a finite magnitude for the average
gain. The crucial observation here is that there is no direct connection between the harmonic amplitude at the end of the
medium A,(L), which determines the emitted harmonic power, and the total parametric gain. This is the reason for
occurrence of SPO even for vanishing external SHG efficiency.

3. The cavity equations

The description of the fields within the cavity is given in terms of equations of motion. To obtain them, the approximate
solution for the propagation through the medium is complemented with the propagation through the remainder of the cavity.
Selfconsistency relations are then imposed for the signal, idler and subharmonic fields at the input mirror of amplitude
reflectivity r (equal for the three resonanting waves), whereby the high finesse limit r = 1 is taken [21]. We introduce the
intracavity fields o, ,; = V2r A /S(O), where 7 is the round-trip time of the cavity. Output and input fields
@y i /s.in/ou ar€ equal to the respective amplitudes V2 A. After eliminating the nonresonant harmonic wave we obtain the
dynamical equations for the fields as

a,= —(y+id)a, —yuvC(Ak,AK)o,a,a] — %D(Ak)lallza] +vV2y. a4,

Jav

V 2
&, =—(y+id e, — TC(AK,Ak) aja’, — vD(AK)la, ,la; .. (22)

The input and output fields are related to the circulating fields by

al.in + al,oul= szcal ’ ai/s,ou[= V2Yc ai/s ’ al.out = J;I(Ak)al2 + 2‘/;I(AK)‘I1 o, - (23)

The harmonic field leaving the nonlinear medium has been defined as a, =2 iA,(L). The interaction strengths are
u=0(g,L/27) and v=1_(gL/27). A, /i/s indicate detunings from the cavity resonance frequencies. The coupling and
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decay rates (assumed equal for signal, idler and subharmonic) are defined as y, =(1 —r)/7,y= v + 7v,, with y,=(aL +
b)/27 the sum of dissipation rates in the crystal and in the remainder of the cavity. The ratio y./7 of the coupling to the
total decay rate is the escape efficiency; it will be of relevance below. In terms of the input mirror transmission 7= 1 — r?
and the cavity round-trip loss S=alL+b, v, /y=T/(T+S).

In our nomenclature, the circulating powers are given by

l 2
CAWIWR al/i/si

| R VATA el VAV 24
VT e . (24)

while the external powers are

)

5

la’f‘_x)u!'_ . (25)

p wl/i/s|

4cpg

)
l.in/out — l.in/outI s Py on =

depg
Note that the fields « are defined differently from the quantum optics convention; here !a,/]/ﬁ /7o ey, /Ou,lz,
|a2,ou(|2 are not equal but proportional to photon fluxes.

3.1. Steady-state solution

The steady-state behavior of singly-resonant SHG and SPO is obtained from Egs. (22) and (23) by setting the time
derivatives to zero. The equations contain three free parameters, the detunings 4, ,; .. The most relevant choice for 4, is
the one that maximizes the subharmonic power circulating in the cavity. This will maximize also the average harmonic
amplitude and thus the parametric gain. With respect to signal /idler detuning 4, ,;, we are interested in those values that
minimize the SPO threshold. Physically, this corresponds to allowing the SPO to “‘choose’” a signal /idler mode pair with
the lowest threshold. In practice, a pair exhibiting the optimum detunings may not exist. The minimum threshold calculated
below is thus to be interpreted as the theoretical mimimum, which may be more or less close to experimentally observed
threshold values. In performing the optimizations we must take into account that the coefficients C, D, may be complex. As
can be seen from Egs. (22), their nonvanishing imaginary parts give rise to intensity-dependent detunings. The contribution
from ImD(Ak) and Im D(AK), for example, represent effective Kerr self- and cross-couplings, respectively, due to
“‘cascaded’” second-order nonlinearity [8,22]. Im D(A k) in particular leads to optical bistability as discussed in Section 1. To
find the optimum detunings, we consider the magnitude squared of the second of Egs. (22). Differentiating the expression
implicitly with respect to 4; ,, and setting dle;|*/d A =dla,|?/d A =0, we obtain

A%+ vImD(AK)la, P =0. (26)

Thus, the cavity detunings are adjusted so that the nonlinear detunings are compensated. Assuming symmetry. \aJZ = |ai|2,
the simple relation

y+ vReD(AK)la,, > = Vur |C(AK,AK)|a, I (27)

is then found that expresses the circulating signal /idler power in terms of the circulating subharmonic power. Inserting this
relation into the first of Egs. (22), the subharmonic field @, may be eliminated, leaving an expression relating the circulating
signal /idler power (~ Ias/ilz) to the input power (~|ea, ,,|°) only. Optimizing Ias/i|2 again, now with respect to the
subharmonic detuning A,, yields the optimum value

. ImD(Ak) vur ReD(AK)ImD(Ak) —Im(C(Ak,AK)C(AK, Ak))
v [C(AK.AK) T~ T2 IC(AK,AK)]

The SPO threshold is found by inserting Egs. (27) and (28) with @, = 0 into the first of Egs. (22),

opt — __
AP =

la, I (28)

(29)

Ph,(T+5) (ICAK.AK)+1(AK))
P _( )

P T IC(AK,AK)P

We have introduced the power scale P = (@, /4cpuoXy*/v). This power scale is independent of wavevector mismaich and
depends on the material nonlinearity, the focusing of the modes and the resonator losses. To express P in terms of
experimentally accessible parameters, we compare it with the threshold power Py for doubly-resonant oscillation pumped
by the harmonic wave. We find by a simple calculation

, v? P (T+S )2

Cdcng WII(AK) IAK)E 4EN

(30)

PDRO
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Here we have used the usual expression of the DRO threshold in terms of the conversion coefficient Ey; =LA I', with the
parametric nonlinearity I"= pon,wig? and the Boyd-Kleinman factor h appropriate for the focusing and wavevector
mismatch Ak at which the oscillator is operated. Near degeneracy, I'=2w3d?/me,c*ni. In practice, Ey_ can be
determined by measuring the efficiency of sum frequency generation w, + w; = 2w,. Using [/ I*=2 2, h/L we obtain

,
_ oz (T+58)
P= —_— 31
2L LT G
A typical value for P in low-loss media, e.g. for parametric generation of 1064 nm in bulk LiNbO; (I"=0.22/W m), is 10

mW.

Egs. (29) and (31) permit the calculation of the theoretical minimum SPO threshold for any type of single-cavity SPO.
The expressions are valid also for standing-wave cavities with double-pass of the harmonic (L is always the propagation
distance in the nonlinear medium per round-trip) as long as relative phase shifts between the waves upon reflection at the
back mirror are neglected.

The signal plus idler output power P, + P, is given implicitly in terms of the ‘‘number of times above threshold™,
P I.in/ P ¥ by

1.in»
Pl.in
Pldjin
~ (IC(AKAK)IP +IC(AK.AK)*) /2 = | 1(AK) I(AK)I?
B IC(AK,AK) + /v | 1(AK)

To obtain the harmonic output power one starts with the third of Eqs. (23) and finds

T+S [ P+P\°
4T v P ’
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— = — . 33
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For completeness we also give the SHG conversion efficiency below threshold,

Py o T N1(AK)? Py o/ (VP
P,_ —> V(AR Py o/ (VP /1) _ (34)

T+S 1 — — -
(14 SVHEOF P/ (/)|

As is well known, for fixed mirror transmission, i.e. fixed escape efficiency, the SHG conversion efficiency exhibits a
maximum value as a function of input power. This value is just the escape efficiency 7/(T + S) from the cavity, and is
attained once the generated harmonic power reaches P, ., =4 vP / ul I(AK)*. The corresponding input subharmonic power
(plotted in Fig. 2) is

4 T+S v _

TH@oOE T a e

P*(Ak)
We emphasize that all expressions given above, except for P. depend on the phase mismatches.
The SPO threshold

Eg. (29) can be easily evaluated numerically for any focusing as determined by the cavity geometry of interest. Here we
limit the discussion to the case of weak focusing, as well as u = v in order to discuss the salient features. The most
important result of Eq. (29) is that the threshold is always finite, since |C(A K,A k)| never vanishes (Fig. 3a), although /(A k)
does so at AkL = +2wN. Fig. 5 presents the inverse threshold of a plane-wave SPO as a function of both wavevector
mismatches, calculated using Eq. (29). For comparison, Fig. 2 introduced in Section 1 is an excerpt in which AL has been
set to zero and only the SHG wavevector mismatch AkL is varied.

Low thresholds are attained when AkL is near 0 or AkL, due to the form of C. Along these branches, the SPO threshold
increases approximately as |AKL| for large AkL. This increase. due to the decrease of the parametric gain |C(A K, Ak)| ~
1/|AkLl, is related to the 1/|A%L] dependence of the average harmonic field inside the nonlinear medium. It is important to
note that this decrease is much weaker than the |AkL| ™" decrease of the SHG gain envelope ([I(AK)]? in Fig. 4b). At any
AkL, the minimum SPO threshold is equal on the two branches; this is a result specific to the near-field focusing geometry.
A numerical evaluation for tight focusing shows that the near-degeneracy branch A KL = AkL is slightly favored.
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<40 AkL

Signal/Idler
1050 Wavelengths
[nm]

Temperature [°C]

Fig. 5. The inverse SPO threshold for a L=1.5cm long plane-wave resonator of MgO:LiNbO, pumped by 1064 nm, as a function of
crystal temperature 7 and output wavelengths. The hump at 1064 nm corresponds to A KL = AkL, the parabolic hump corresponds to
A KL =0. The wavevector mismatch is AK =[7.5(T — 107°C)/K—8.7x 10'(1 - w; ,, /w,)*) ecm ™"

At the special point AkL =AKL =0 (hidden in Fig. 5) the SPO threshold is P{" /P =4y/y, =P (0), ic. SPO
threshold coincides with the input power at which the SHG efficiency is maximum [9]. This coincidence occurs more
generally whenever |C(A K,Ak)|=|I(Ak))*, Egs. (29) and (35) then being equal, since Re D(Ak) = |I(AK)*. The SPO
threshold is however not at a minimum at AkL = AKL = 0. The absolute minimum is taken on in the vicinity, with a
significantly smaller value P /P =2.087v/7,.

Jan

Optical limiting of the harmonic power

Fig. 6 presents the calculated conversion efficiencies for signal/idler generation, (P, + P))/P, =2y Ots|2 +
le,1)/la, ;|* and for the emitted harmonic power, Py /P, i =t oul* /1, il

For Ak=AK =0 the SHG conversion efficiency reaches the maximum value, equal to the escape efficiency, at
threshold. Above threshold, the harmonic output power remains clamped at its value just below the onset of parametric
oscillation since the second term in the absolute value in Eq. (33) vanishes. The harmonic power is fixed at P, =4 P=
Y, P /v so that the harmonic efficiency drops as y. P\, /yP, .- The signal /idler output power on the other hand is a
linear function of the input power, P, + P, = (y,/y)*(P, ., — P ), with a slope efficiency equal to the square of the escape
efficiency.

This **optical limiter”” effect has been discussed earlier for SPO in doubly-resonant SHG by Marte [23]; a similar effect
has been studied by Siegman in standing-wave DROs more than 30 years ago [24]. Note that in the SPO the optical limiter
effect appears more generally when I{(Ak)I(AK)™ = C(AK,Ak). Limiting in SPOs has recently been observed experimen-
tally [11,10].

l.in

E

§

Pgt+P; /Pl,in ’ PZ,oul/PI,in
§ 8

(=4

Input power Py, /Pl

Fig. 6. Input-output power conversion efficiencies from subharmonic to signal /idler (full lines) and subharmonic to harmonic (dashed). as a
function of subharmonic input power. Optical limiting P, ,,, = const. (AkL = AKL = 0) and SPO-induced SHG (AkL=2mw. AKL =0) are
shown. The cavity escape efficiency is chosen as . /vy = 0.8.
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Fig. 7. Optimum SHG efficiency without SPO and for SPO at large SHG phase mismatch. The cavity escape efficiency is optimized at each
input power level. Line: no SPO, AkL = 217. Points: SPO-induced SHG. AkL = 20#. The parametric generation wavevector mismatch was
setto AK=0,and v=pu.

SPO-induced SHG

An interesting phenomenon occurs when the wavevector mismatch is such that /(Ak) = 0 = Re D(Ak), i.e. no harmonic
power is emitted below threshold (see Eq. (34)). From the above-threshold expression Eq. (33) we see that the onset of
parametric oscillation can cause the external SHG efficiency to turn on, as C(AK,Ak)/(AK) typically is nonzero. This
effect is possible since the circulating signal and idler waves generate the sum frequency 2 @, with a gain /(A K) which is
large when A KL = 0. In Fig. 7 we compare the efficiency of SPO-induced SHG at a zero of the usual SHG (AkL = 2lr)
with the usual SHG efficiency, given by

2
Py o vi+p -1 . Py
o _ Rk ) . p=l(AK)P =—2— (36)
P p P(T=0)
at a phasematching peak nearby (AkL = 207r), assuming SPO to be quenched. The efficiencies are quite similar; this
indicates that in the case of large phase mismatch SPO does not prevent the harmonic generator from reaching conversion
efficiencies on the order of 10% for input powers at the 10 W level.

4. Quantum fluctuations

The quantum properties of the SPO may be derived using well-established techniques. These consist in translating the
classical equations of motion of the fields to the quantum analog, linearizing the resulting equations for small fluctuations of
the fields around the classical steady-state solutions, and obtaining an input-output matrix relating the fluctuations of the
waves injected into the nonlinear system to the fluctuations of the waves leaving it. The quantum noises can then be
calculated from the matrix elements. As it is essential to consider all sources of input quantum noise, Eqs. (22) must be
extended to include input harmonic and signal /idler waves. To keep the discussion simple, we shall take the special case of
zero phase mismatches, weak focusing, and zero detunings. We obtain the equations of motion

. roos . .
)= —ya, — Elall o) - yuroaa; — ﬁalalin +V2v. a0,

Vi

. 2 « .
ai/sz_‘yai/s—vlas/ilai/s__2 alas/i_‘/;a\/ialjn-'- 2'Y<-ai/s.in~ (37)

where we have introduced the harmonic, idler and signal input fields @, ;,, @; , ;,- The last two relations in Egs. (23) are
also generalized,

Qi ssom T Xijgin™ V27, @ /s ) ot = Qi T VM a|3+2\/; a;a,. (38)

The nonlinear system described by Eqgs. (37) and (38) encompasses as special cases important systems that have been studied
in the past both theoretically and experimentally: for » = 0 (no parametric interaction) and no harmonic input mean field,
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a, ;, = 0 we recover the singly-resonant frequency doubler [5]. For u =0 (no SHG interaction) and no idler /signal input
mean field, o, ,, ;, = 0 we have the nondegenerate parametric oscillator. To facilitate comparison with the literature, we now
consider the plane-wave case; to this end the harmonic field and the nonlinear couplings are rescaled as a;, o
- ‘/_2‘ az.in/ouv m— 2/1' v— 2.

Below SPO threshold

It is easy to show that below threshold, where o ,; =0, the linearized equation of motion of the subharmonic and
harmonic fluctuation operators are identical to those of usual singly-resonant SHG [5]. The presence of parametric gain for
subthreshold signal /idler waves does not lead to consequences for subharmonic and harmonic since the signal and idler
mean fields are zero. The amplitude quantum noise variances of harmonic and subharmonic are minimum at zero frequency
and decrease to 1/2 and 3 /4 of the coherent state level, respectively, just below threshold [5].

In order to discuss the signal /idler noise below threshold, we note an important analogy. The nondegenerate OPO is
formally similar to the SPO: as Egs. (37) show, the driving force for signal and idler is the externally injected harmonic
wave 2a, ;; in the first case, and the subharmonic circulating power Vo a? in the second. Note however that the latter is a
positive definite quantity, in contrast to a, ;.. This analogy extends to the quantum behavior: in both cases the input
quantum noises of the subharmonic (and the vacuum noise of the harmonic) do not couple to the signal /idler fields below
threshold. As for the nondegenerate OPO, the SPO generates twin beams. We omit explicit expressions for the quantum
noises, since they have been extensively discussed [26]. The only change therein is the replacement of the normalized pump
power P, .. /Ppro = 4P&3,,/y* by the square of the ratio of circulating subharmonic power relative to its value at SPO
threshold, 7% */y?. The important final result is that at SPO threshold and zero frequency, the variance in the difference of
signal and idler fields reaches 1 — 7./, and thus a high degree of correlation is obtained for a cavity with large escape
efficiency.

Above SPO threshold

To obtain the above-threshold quantum properties of the SPO, we can make use of the results derived by Marte for
parametric oscillation in doubly-resonant SHG [23,25). In the latier system, the harmonic wave is resonant, and obeys an
additional equation of motion. If the decay of the harmonic wave (decay rate v,) is much faster than any other dynamics, the
harmonic wave can be adiabatically eliminated. The resulting three equations of motion for the subharmonic, signal /idler
waves as well as the algebraic equation for the output harmonic wave are then formally identical to the plane wave-form of
Eqs. (37) and (38). The correspondence is obtained by setting in those equations

2 2

K X

, (39)

where « and x are the coupling constants of Ref. [25]. As a consequence of this correspondence, the quantum noises for
singly-resonant SPO are obtained from those for harmonic-resonant SPO by letting y, — > in the latter. In the spirit of
simplicity we consider equal coupling strengths, x = y (i.e. u = v) and unity escape efficiencies (y= v.). From Egs.
(6)-(9) of Ref. [25), setting s =1, r =1, we obtain the normalized quantum noise powers of amplitude (a) and phase (b)
quadrature fluctuations,

1—e+ 02 e+ 02

— —. V() =1+ <, (40)
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(41)

where 2= /2y, e=P, /P, > | and P, =4P is the SPO threshold at AKL = AKL = 0.

We are now in a position to discuss the above-threshold behavior of the intensity (amplitude) quantum noise of the
fundamental and harmonic waves. As noted by Marte, above threshold the harmonic amplitude noise is always above shot
noise for zero frequency, with a divergence at threshold due to the diverging quantum noise of signal and idler. The

minimum amplitude noise occurs at a nonzero frequency {2, given for both the subharmonic and the harmonic waves by

(Rep/2v) =e—1+e/e—1. (42)
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This optimum frequency grows monotonically from zero as the SPO is driven further above threshold. The minimum noise
levels are

1 1
Va(25,) =1- re(ervesT) V() =1- te(erdesT) (43)

At threshold, these expressions connect without discontinuity to the values just below threshold cited above. The important
result contained in Eq. (43) is that the minimum quantum noise above threshold increases monotonically with input power
and is larger than the value achievable below threshold. This result indicates the importance of preventing SPO when
operating singly-resonant frequency doublers as sources of bright squeezed light. Tsuchida [7] reported 5.2 dB of quantum
noise reduction in singly-resonant SHG. Such a value appears to imply that SPO did not occur in his system.

The correlations between the signal and idler beams above threshold are described by the intensity sum and difference
quantum noise powers,

1+3e+ 02

Vsum(ﬁ)=1+ > Vdiff(‘())=1_

A — = (44)
4202+ (—1+e- 0% 1+0?

V.m is always above the shot noise level. The result for the intensity difference Vg is particularly simple and identical to
those for the harmonic-resonant SPO [25] and the conventional DRO [27]. It is independent of the subharmonic pump power.
In the presence of cavity loss, the zero frequency value of zero is replaced by 1 — v, /y. Twin beams with strong
correlations are thus expected above the SPO threshold if the escape efficiency is high. On the other hand, each individual

beam can reach a maximum amplitude noise suppression of 3 dB, at zero frequency and far above threshold.

5. Conclusion

We have analyzed some of the properties of the subharmonic-pumped parametric oscillator and put them in context with
usual singly-resonant SHG and cascaded x@ effects in a cavity. The main goal of the analysis was to study how the SPO
threshold and the conversion efficiency depend on experimentally controllable parameters. Arbitrary wavevector mismatches
for the two individual conversion processes, the second-harmonic generation and the parametric generation, were therefore
taken into account. The former is controlled by the temperature or orientation of the nonlinear crystal. The parametric
wavevector mismatch will typically be the one that minimizes the threshold. Our calculation yields the Ak-dependence of
the SPO threshold, so that the preferred oscillation wavelengths can be determined. We emphasize, however, that for a
precise prediction of the output spectrum for given Ak, the discrete mode spectrum of signal and idler (giving rise to a
clustering effect [9]) and possibie spectral characteristics of the cavity mirrors must also be considered.

The threshold and conversion efficiency of the SPO exhibit distinct behaviours depending on the phase mismatches.
While at Ak = A K = 0 optical limiting in the harmonic and constant slope efficiency for signal /idler generation are found,
at other mismatches the conversion efficiency is nonmonotonic. Near Ak=AK =0 we find a relatively complicated
dependence of the threshold on the mismatches. The minimum threshold is found to be almost a factor two lower than that at
Ak=AK=0.

Two central consequences of the fact that the harmonic amplitude over the whole nonlinear medium contributes to the
gain for signal and idler are that

(i) SPO can occur even when Ak is such that the net second-harmonic generation efficiency is zero. Once parametric
generation sets in, there is generation of the second harmonic wave, but through the sum-frequency process;

(ii) For large |A k| the SPO threshold increases linearly with |Ak| within the Ak-intervals where the threshold is lowest.

The conversion efficiency for subharmonic input to signal plus idler is relevant for application of the SPO as a frequency
converter. Values in the range of tens of percent can be reached for input powers a few times above threshold. This is in
agreement with recent experiments [10] and shows that the SPO has potential as an efficient frequency converter.

It should be noted that stable multi-mode oscillation of the SPO was observed already in the first implementation of the
SPO [8,9]. This effect deserves a detailed theoretical analysis since it may lead to limits in the conversion efficiency of SPO.

Regarding the quantum properties of the SPO we find that on one hand the degree of squeezing in the harmonic wave is
reduced above threshold due to coupling to the quantum noise of the signal and idler waves. Therefore, if a singly-resonant
frequency doubler is to be used to generate substantially squeezed light (> 3 dB), it must be designed to avoid SPO, e.g.
using intracavity etalons. On the other hand, the quantum correlation between signal and idler waves can be excellent both
below and above threshold, just as for the usual parametric oscillator. In applications where near-degenerate signal /idler
twin beams are desired and the pump wave for the oscillator has first to be generated by SHG, the SPO may represent a
replacement for separate resonant SHG and OPO devices.
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