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The key motivation for scalable quantum computing is Shor's algorithm 
(1) which enables the efficient factoring of large composite numbers into 
their constituent primes. The presumed difficulty of this task is the basis 
of the majority of today's public-key encryption schemes. It may be that 
scalable quantum computers are not realistic, if for example quantum 
mechanics breaks down for large numbers of qubits (2). If, however, 
quantum computers are realistic physical devices, then the Extended 
Church-Turing thesis-that any function efficiently computed on a realis-
tic physical device can be efficiently computed on a probabilistic Turing 
Machine-means that a classical, efficient, factoring algorithm exists. 
Such an algorithm, long sought-after, would enable us to break public-
key cryptosystems like RSA. A third possibility is that the Extended 
Church-Turing thesis itself is wrong. 

How do we answer this trilemma? As yet there is no evidence that 
large-scale quantum computers are inherently impossible-that will need 
to be tested directly via experiment-and there is no efficient classical 
factoring algorithm or mathematical proof of its impossibility. This 
leaves examining the validity of the Extended Church-Turing thesis, 
which would be contradicted, for example, by building a physical device 
that efficiently performs a task thought to be intractable for classical 
computers. 

One such task is boson sampling: sampling from the probability dis-
tribution of n identical bosons scattered by some linear unitary process, 
U. The probabilities are defined in terms of permanents of n×n 
submatrices of U-in general, calculating these is exponentially difficult, 
since calculating the permanent is a so-called `#P-complete' problem 
(3)—a class above even `NP-complete' in complexity—and is therefore 
strongly believed to be intractable. Note that this does not mean that 
boson sampling is itself #P-complete: the ability to sample from a distri-
bution, need not imply the ability to calculate the permanents that gave 
rise to it. However, by using the fact that the permanent is #P-complete, 
(4) recently showed that the existence of a fast classical algorithm for 

this `easier' sampling task, leads to 
drastic consequences in classical com-
putational complexity theory, notably 
collapse of the `polynomial hierarchy'. 

Here we test the central premise of 
boson sampling, experimentally verify-
ing that the amplitudes of n = 2 & n = 
3 photon scattering events are given by 
the permanents of n×n sub-matrices of 
the operator U describing the physical 
device. We find the protocol to be 
robust, working even with imperfect 
sources, optics, and detectors. 

Consider a race between two par-
ticipants: Alice, who only possesses 
classical resources; and Bob, who in 
addition possesses quantum resources. 
They are given some physical opera-
tion-described by an evolution opera-
tor, U-and agree on a specific n-boson 
input configuration. Alice calculates an 
output sample-distribution with a clas-
sical computer; Bob either builds-or 
programs an existing-linear-photonic 
network, sending n single-photons 
through it and obtaining his sample by 
measuring the output distribution, Fig. 
1A). The race ends when both return 
samples from the distribution: the win-
ner is whoever returns a sample fastest. 
As n becomes large, it is conjectured 

that Bob will always win, since Alice's computation runtime increases 
exponentially, whereas Bob's experimental runtime does not. It becomes 
intractable to verify Bob's output against Alice's, and-unlike for Shor's 
algorithm-there is no known efficient algorithm to verify the result (4). 
Importantly, however, one can take a large instance-large enough for 
verification via a classical computer-and show that Bob's quantum com-
puter solves the problem much faster, thereby strongly suggesting that 
the same behavior will continue for larger systems, casting serious doubt 
on the Extended Church-Turing Thesis. In a fair race, Bob must verify 
that his device actually implements the target unitary: an alternative fair 
version is to give both Alice and Bob the same physical device-instead 
of a mathematical description-and have Alice characterize it before she 
predicts output samples via classical computation. Alice can use a char-
acterization method that neither requires nonclassical resources nor adds 
to the complexity of the task (5). 

We tested boson sampling using an optical network with m = 6 input 
and output modes, and n = 2 and n = 3 photon inputs. We implemented 
randomly chosen operator such that the permanents could not be effi-
ciently calculated (6): that is, the elements are complex-valued and the 
operator U is fully connected, with every input distributed to every out-
put. The 6-input×6-output modes of U are represented by two orthogonal 
polarizations in 3×3 spatial modes of a fused-fiber-beamsplitter (FBS), 
an intrinsically stable and low-loss device. The mode mapping is 
{1,...,6} = {| H 〉1,| V 〉1,| H 〉2,| V 〉2,| H 〉3,| V 〉3}, where | H 〉1 is the hori-
zontally polarised mode for spatial mode 1. We can use polarization 
controllers at the inputs and outputs of the central 3×3 FBS to modify the 
evolution, see the equivalent circuit diagram in Fig. 1B). 

Alice calculates the probability of bosonic scattering events in the 
following way (4, 7). Having characterised the evolution U using the 
method detailed in section S1 (8), and given the input and output config-
urations S = (s1,...,sm) and T = (t1,...,tm) with boson occupation numbers si 
and tj respectively, she produces an n×m submatrix UT by taking tj copies 
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of the jth column of U. Then, she forms the n×n submatrix UST by taking 
si copies of the ith row of UT. The probability for the scattering event T, 
for indistinguishable input photons S, is given by 2Per(Q

T STP U= . Con-
versely, the classical scattering probabilities-when the input photons are 
distinguishable-are given by Per( )C

T STP U=  , where 
2

ij ijST STU U= . 
Bob on the other hand experimentally prepares the n-photon Fock 

state |t1,...,tm 〉 . After injecting the desired input to the circuit, he deter-
mines the probability of the scattering event T by projecting onto its 
corresponding state using single-photon detectors connected to a coinci-
dence-counting logic. We prepare near-single-photon Fock states via 
spontaneous parametric downconversion in a nonlinear crystal, Fig. 1C), 
and for further details section S2 (8). Once the photons pass through the 
network, they are detected by single-photon avalanche diodes. The bos-
on sampling protocol measures the frequency of output events, i.e., raw 
coincident photon counts. These, however, are strongly affected by dif-
ferences in efficiency between photon counters, an effect that can be 
removed by measuring non-classical interference visibility instead, 

C Q
T T

T C
T

P PV
P
−

=
     (1)

 

where Q
TP and C

TP  are the quantum and classical probabilities for the 
output configuration T measured for completely indistinguishable and 
distinguishable photons respectively. Distinguishable statistics are ob-
tained by introducing a temporal delay, ∆τ, between the input photons. 
When all photons are delayed by significantly more than their respective 
coherence lengths, L, true two-photon quantum interference cannot oc-
cur. Figure 2A) outlines the technique Alice uses to predict the visibility 
from the unitary evolution U. 

For n = 2, high count-rates mean that 27 samples of the output 
T were taken as the temporal delay was changed between the two input 
photons (9). For n = 3–where we use three of the photons from a four-
photon state–low count rates mean that only three measurements were 
taken to avoid optical misalignment and signal drift that occurs over 
necessarily long experimental runtimes. Therefore, for n = 2 the visibili-
ties are calculated from the fitted Gaussian curves, Fig. 2B); for n = 3 the 
probabilities C

TP are obtained from just two measurement settings, C
TP

(1) = {−∆τ∞,0,∆τ∞} and C
TP (2) = {∆τ∞,0,−∆τ∞}, where {τ1,τ2,τ3} are the 

temporal delays of photons 1, 2 and 3 with respect to photon 2, and ∆τ∞ 
>> L/c. C

TP  is calculated as the average of these two probabilities to 
account for optical misalignment. Accordingly, Q

TP are obtained with a 
single measurement of the output frequencies for completely indistin-
guishable photons, given by the delays {0,0,0}. 

Figure 2C) shows Alice's predictions and Bob's measurements for n 
= 2. We compare their results using the average L1-norm distance per 
output configuration,  

1
1

( , )
A B

T T TV V
C m n

= ∑ −  

where C(m,n) is the binomial coefficient, see section S3 (8). We find 
excellent agreement between Alice and Bob, with the average across 
these three configurations being 1  = 0.021 ± 0.001. Next we show that 
if Alice uses her classically powerful resources—e.g. coherent states 
from a laser, see section S4 (8)—to perform an analogous experiment to 
Bob's she will not obtain the same results. Her classical predictions-
given by the yellow circles in Fig. 2C)-are markedly different to Bob's 
quantum measurements, with 1  = 0.548 ± 0.006. This large, statistical-
ly significant, disagreement highlights that Bob is accurately sampling 
from a highly nonclassical distribution. 

Figure 3 shows the results for n = 3: there is a larger average dis-
tance between Alice and Bob's distributions, 1  = 0.122 ± 0.025 and 
consequently a smaller distance between Alice's classical predictions and 
Bob's measurements, 1  = 0.358 ± 0.086. We attribute these changes 
chiefly to the increased ratio of higher-order photon emissions in the 

three-photon input compared with the two-photon case, see section S5 
(8). Having tested all possible `non-colliding' output configurations-that 
is, one-photon per output-mode-we also tested `colliding' configurations 
with two-photons per output-mode. This requires photon-number resolu-
tion (10, 11), using the method shown in Fig. 4A). The results in Fig. 
4B) shows agreement between Alice's predictions and Bob's measure-
ments similar to the non-colliding case, 1  = 0.153 ± 0.012, and a much 
larger distance between Alice's classical predictions and Bob's measure-
ments, 1  = 0.995 ± 0.045. The latter is expected as two-photon outputs 
are correspondingly rarer in the classical distribution. 

These results confirm that the n = 2 and n = 3 photon scattering am-
plitudes are indeed given by the permanents of submatrices generated 
from U. The small differences-larger for n = 3 than n = 2-between Al-
ice's Fock-state predictions and Bob's measurement results are expected, 
since Alice's calculations are for indistinguishable Fock-state inputs, and 
Bob does not actually have these. The conditioned outputs from 
downconversion are known to have higher-order terms, i.e., a small 
probability of producing more than one-photon per mode-see section S5 
and fig. S1 (8)-and are also spectrally entangled, leading to further dis-
tinguishability. Interestingly, spectrally mismatched detector responses 
can alter the observed signals due to contributions from the immanent 
(12), of which the determinant and permanent are special cases. Due to 
flat spectral responses, we can rule this out in our experiment. 

Strong evidence against the Extended Church-Turing thesis will 
come from demonstrating boson sampling with a larger-sized system 
where Bob's experimental sampling is far faster than Alice's calculation 
and where classical verification is still barely possible-according to (4), 
this regime is on the order of n = 20 to n = 30 photons in a network with 
m >> n modes. This is beyond current technologies, but rapid improve-
ments in efficient photon detection (13, 14), low-loss (15, 16) and recon-
figurable (17, 18) integrated circuits, and improved photon sources (19) 
are highly promising. boson sampling has also be proposed using the 
phononic modes of an ion trap (20). 

An important open question remains as to the practical robustness of 
large implementations. Unlike the case of universal quantum computa-
tion, there are no known error correction protocols for boson sampling, 
or indeed any of the models of intermediate quantum computation, such 
as deterministic quantum computing with one qubit (DQC1) (21, 22), 
temporally unstructured quantum computation (IQP) (23), or 
permutational quantum computing (PQC) (24). These intermediate mod-
els have garnered much attention in recent years due both to the inherent 
questions they raise about quantum advantage in computing, and be-
cause some of them can efficiently solve problems believed to be classi-
cally intractable, e.g., DQC1 has been applied in fields that range from 
knot theory (25) to quantum metrology (26). A recent theoretical study 
posits that photonic boson sampling retains its computational advantage 
even in the presence of loss (27): our experimental results are highly 
promising in regard to the robustness of boson sampling, finding good 
agreement even with clearly imperfect experimental resources. 
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Fig. 1. Experimental scheme for boson sampling. (A) Both Alice and Bob-possessing classical and quantum resources 
respectively-must sample the output distribution from some unitary, U. (B) Equivalent circuit: The orthogonal polarizations in 
each input spatial mode can be arbitrarily combined by the unitaries a1. . .a3. A multi-port, u(3), interferes all modes of the same 
polarization; orthogonal polarizations are recombined by b1. . .b3. (C) Experiment: photons are produced via downconversion 
in a nonlinear crystal (BBO) pumped by a frequency-doubled (SHG) laser (Ti:S) (8). Photon 4 acts as a trigger, photons 1-3 
are inputs; 1 and 3 can be delayed or advanced with respect to photon 2 by ∆τ1, ∆τ3 respectively. Local unitaries, a1. . .b3 are 
implemented with polarization controllers (POL); u(3) is implemented by a 3×3 non-polarising fiber beam-splitter (FBS); three 
polarising fiber beam-splitters (PBS) output 6 spatial modes to single photon avalanche diodes (APDs). The fiber beam-
splitters work by evanescent coupling between multiple input fibers in close proximity. 
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Fig. 2. Two-photon boson sampling. (A) Outline of Alice's technique to predict visibilities from the unitary evolution U (8). For 
photons input and output in modes 1 and 3 her prediction give by the bar (bottom-right); its uncertainty-obtained by 10 
separate characterizations of the unitary-is represented by the shaded box on top of bar. (B) Two-photon quantum 
interferences: the five output combinations {1,m} for the input configuration of {1,5}. Errors are smaller than marker size and 
the solid blue lines are Gaussian fits used to calculate the visibility from Eq. 1. (C) Alice's predictions (blue line envelope) and 
Bob's measurements (orange bars) two-photon visibilities. Input configurations are shown top-left of each panel; output modes 
are labeled at plot bottom. Errors are given by light-blue and dark-red boxes at the extrema of each data set. Yellow circles 
are the visibility predictions given coherent input-states. 
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Fig. 3. Three-photon boson sampling. Alice's predictions (blue line envelope) and Bob's measurements (orange bars) for 
three-photon visibilities. Labels, errors, and symbols are as defined in Fig. 2C). 

Fig. 4. Three-photon boson sampling with colliding outputs. (A) Number-resolution was achieved with a 50:50 fiber beam-
splitter in mode 5 and an additional detector. Note that an imperfect splitting ratio for this FBS impedes only the effective 
efficiency of our number resolving scheme (10, 11). (B) For an input configuration {1,3,5}, and measuring two-photons in 
output 5, the solid blue-line envelope shows Alice's predictions; the green bars are Bob's measured visibilities. Labels, errors, 
and symbols are as defined in Fig. 2C) 
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