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Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we
test tight measurement-uncertainty relations using single photons. We implement two independent, ideal-
ized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt
them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us
to verge upon the fundamental limits of measurement uncertainty.
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Measurement—assigning a number to a property of a
physical system—is the keystone of the natural sciences.
Our belief in perfect measurement precision was shattered
by the paradigm shift heralded by quantum physics almost
a century ago. It is, perhaps, surprising that even today
active debate persists over the fundamental limits on meas-
urement imposed by quantum theory.

At the heart of this debate is Heisenberg’s uncertainty
principle [1], which encompasses at least three distinct state-
ments about the limitations on preparation and measurement
of physical systems [2]: (i) a system cannot be prepared such
that a pair of noncommuting observables (e.g., position and
momentum) are arbitrarily well defined; (ii) such a pair of
observables cannot be jointly measured with arbitrary accu-
racy; and (iii) measuring one of these observables to a given
accuracy disturbs the other accordingly.

The preparation uncertainty (i) was quantified rigorously
by Kennard as [3]

AxAp > h/2, (1)

where Ax and A p are the standard deviations of the position
and momentum distributions of the prepared quantum sys-
tem, respectively. For measurement uncertainty (ii) and (iii),
the corresponding quantities of interest are the measurement
inaccuracies ¢ and disturbances #. In his original paper [1],
Heisenberg argued that the product of &, and 7, should
obey a similar bound to (1) in a measurement-disturbance
scenario; however, a formal proof was long lacking.
Recently, Busch et al. provided such a proof for a relation
of the form e,n, > 7/2 [4].

However, there has been controversy on whether such a
relation holds in full generality [4-10]. The point of con-
tention is the choice of exact definitions for the measure-
ment inaccuracies € and disturbances #. In their derivation,
Busch et al. [4] independently maximized the inaccuracies
and disturbances over all possible quantum states for a
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given measurement apparatus; hence, their inaccuracies
and disturbances are in general defined for different states.
When both quantities are defined on the same quantum state,
the relation &,#, > 7/2 does not necessarily hold [5,6].

Following this observation, Ozawa [11,12] and Hall [13]
derived new relations for the joint-measurement and the
measurement-disturbance scenarios for any pair of observ-
ables. These were recently tested experimentally with neu-
tronic and photonic qubits [14—18], demonstrating violation
of a generalization of the above relation. Although univer-
sally valid, neither Ozawa’s nor Hall’s relations are optimal;
Branciard improved these and derived tight relations quan-
tifying the optimal trade-off between inaccuracies in
approximate joint measurements and between inaccuracy
and disturbance [19] for the definitions of ¢ and # used
by Ozawa and Hall.

Here, we test Branciard’s new relations by performing
approximate joint measurements of incompatible polariza-
tion observables on single photons; see Fig. 1(a). We verify
that we can get close to saturating these relations in practice.
Although framed within the joint-measurement scenario,
our analysis also applies to the measurement-disturbance
scenario, illustrated in Fig. 1(b), in which case the inaccuracy
e can be interpreted as the disturbance 5z on B.

We use two independent methods for estimating inaccur-
acies and disturbances experimentally: the three-state
method [20] and the weak-measurement method [21].
The three-state method requires the preparation of multiple
input states. The weak-measurement method, in turn, more
closely resembles the classical approach for measuring
inaccuracies, but comes at the cost of a more challenging
experiment. Crucially, both methods were defined under
ideal conditions which are unattainable in practice.
Therefore, we extend the respective estimation procedures
to account for experimental imperfections—a step that has
previously not received sufficient attention.

© 2014 American Physical Society
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FIG. 1 (color online). (a) The approximate joint measurement
scenario: a quantum state p is subjected to a measurement M,
from which observables A and B are extracted to approximate
two incompatible observables A and B, respectively. (b) In our
implementation, an actual measurement of B is performed after
p is disturbed (to also obtain an approximation of A). By opening
the black box M, our experiment can also be interpreted—when
B is directly extracted from the disturbed measurement of B—as
implementing the measurement-disturbance scenario. Note that
this scenario requires B and B to have the same spectrum.

Theoretical framework.—Let p denote a quantum state,
and let A and B be two observables. The (in)compatibility
of A and B when measured on p is quantified by the param-
eter Cyp =5 Tr[(AB — BA)p]: whenever C,p # 0, they
do not commute and cannot be jointly measured on p.
However, one may still approximate their joint measure-
ment using an observable M [or, more generally, a positive
operator-valued measure (POVM) M [22] ] and defining
approximations A = f(M) and B = g(M) [23], see
Fig. 1. Specifically, for an outcome m of M and real-valued
functions f and g, one outputs f(m) to approximate the
measurement of A, and g(m) to approximate the measure-
ment of B. Following Ozawa [11,12], one can quantify the
inaccuracies of these approximations by the root-mean-
square errors
eq = Tr[(A—A)p]'/2, ez = Tr[(B—B)*p]'2.  (2)
Branciard showed in [19] that, for any approximate joint
measurement, the above definitions of €, and ez satisfy
the uncertainty relation for approximate joint measurements

AB%€} + AA%e} + 21/ AA2AB? — Clpeqep > Cap. (32)

where AA = (Tr[A%p] — Tr[Ap]?)"/? and AB = (Tr[B?p] —
Tr[Bp]?)!/? are the standard deviations of A and B on the
state p. Furthermore, when p is pure, this relation is tight
[19]: it quantifies the optimal trade-off in the inaccuracies
of the approximate measurements .4 and B.

Interestingly, saturating Eq. (3a) may require the
approximate observables .4 and B to have different spectra
from A and B—i.e., the optimal output values f(m) and
g(m) may not be eigenvalues of A and B. One may, never-
theless, want to impose that the approximations .4 and/or B
have the same spectrum as A and B: this assumption is natu-
ral for B in a measurement-disturbance scenario, where B
corresponds to an actual measurement of B after p is dis-
turbed; see Fig. 1(b). With this restrictive same-spectrum
assumption, one can, in general, derive stronger relations

than (3a) [19]. For instance, in the case of =+1-valued
observables (such that A2 = B> = 1), when also imposing
A* = A% =1 and/or B> = B> =1, relation (3a) can be
strengthened as follows [19,24]: Eq. (3a) with replacements
- &g —

1—(1—¢€%/2)%, 1—(1—e3/2),

(3b)

where the replacement is made for the observable(s) on
which the same-spectrum assumption is imposed.In order
to test the relations (3a) and (3b) experimentally, one must
determine the inaccuracies ¢ 4 and eg. If we expand Eq. 2
(see the Supplemental Material [25]), €4 can be related to
the measurement statistics of M in the states p, ApA and
(1+A)p(1+A)/|-|l, motivating the three-state method
[20]. Alternatively, the weak-measurement method [21] links
the definition of €4 to the joint probability distribution of
an initial weak measurement of A, followed by a
measurement of M. These two independent techniques
allow us to estimate €4 and ez without any assumptions
about the actual measurement apparatus.

Experimental implementation.—Our experimental dem-
onstration was performed with polarization-encoded
qubits; see Fig. 2. Denoting the Pauli matrices o, , ., and
their eigenstates |+x, y, z), we prepared p = | + y)(+y| =
(1 +6,)/2 in the case of the three-state method, and p =
(1++V1—«%c,)/2 for the weak-measurement method,
where « € [—1,1] quantifies the measurement strength.
On these states we approximated the joint measurement of
the incompatible observables A = ¢, and B = o,. For ideal
states p, one finds C3; = 1 and C3, = 1 — k2, respectively.

The measurement apparatus implementing the joint
approximation of A and B was chosen to perform a projective
measurement M = cos 0o + sin 0o, onto a direction in the
xz plane of the Bloch sphere. In our experiment, this was real-
ized by a half-wave plate and a polarizing prism which pro-
jected onto | — z), Fig. 2. The outcomes m = £1 of the
measurement of M were then used to output some values
f(m) and g(m). These values were either chosen to minimize
the inaccuracies € 4 and €5, or set to =1 in the case where the
same-spectrum assumption was imposed [25].

For both experiments data were acquired for a series of
settings 6 € [0, 2z] of M. We emphasize that in the calcu-
lations of € 4 and e from either technique, we used neither
the angle 0 nor did we make any assumptions on the inter-
nal functioning of the measurement apparatus (e.g., that it
implements a projective measurement): it is considered a
black box that performs a fully general POVM with
classical outputs m = +1.

The three-state method.—For this method [20], in addi-
tion to the state p=|+y)(+y|, we prepared the states
p1=ApA=BpB=|—y)(-y| and py=(1+A)p(1+A)/
I-ll=|+x)(+x| [respectively, pb=(1+B)p(1+B)/
II-ll=|+2z){+z|], and characterized them using over-
complete quantum state tomography [27]. The values of
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FIG. 2 (color online). Experimental setup. (a) Three-state
method. Single photons at a wavelength of 4 = 820 nm were
produced in a noncollinear type-I spontaneous parametric
down-conversion (SPDC) source using a p-barium-borate
(BBO) nonlinear crystal, pumped by a frequency-doubled
fs-pulsed Ti:sapphire laser. State preparation was performed by
Glan-Taylor polarizers (GT), a quarter-wave plate (QWP), and
a half-wave plate (HWP). A HWP at an angle of (6/4) and a
polarizer implemented the measurement M. The additional
QWP between these elements was used for state tomography,
with avalanche photodiodes (APD) used for detection.
(b) Weak-measurement method. State preparation and final meas-
urement were realized as in (a). The weak measurement relied on
a controlled-phase gate based on two-photon interference at a par-
tially polarizing beam splitter (PPBS) with nominal reflectivities
of Ry = 0 and Ry, = 2/3 for horizontal and vertical polarization,
respectively [26]. The required amplitude compensation (dashed
PPBS) was performed via prebiased input states and all Hada-
mard gates were incorporated into either the state-preparation
or the measurement wave plates. The corresponding circuit dia-
gram is shown in the gray inset. Note that the controlled-NOT gate
is equivalent to a controlled-phase gate between Hadamard gates
in the meter arm.

€ 4 (respectively, e5) can then be estimated from the meas-
urement statistics of M in these states [20,25].

The experimental setup is shown in Fig. 2(a). The initial
state p was prepared on a heralded single photon with
high quantum state fidelity F = 0.999 172(7) and purity
P =0.99917(2), and gave C%; = 0.99669(3). The states
p1 and p, were prepared with similar quality [25]. Figure 3
shows the results obtained for € 4 and e, without and with
the same-spectrum assumption (imposed in the latter case on
both A and B; see [25] for the case where it is only imposed
on B). We get very close to saturating relations (3a) and (3b).

Importantly, the equations used for obtaining € 4 and ez
in the original three-state proposal [20] assume perfect state
preparation. Directly applying them to imperfect experi-
mental states invalidates the derivation and leads to unre-
liable results. In the Supplemental Material [25], we extend

2.0

FIG. 3 (color online). Experimental measurement inaccuracies,
€4 VS €g, characterized by the three-state method. The blue rec-
tangles represent the intervals of compatible values of € 4 and €5
without the same-spectrum assumption. The solid blue curve
corresponds to the bound imposed by the relation (3a), for the
experimental values of AA, AB, and Cyp; the values below this
bound are forbidden by quantum theory. The dotted-dashed blue
line is the bound imposed by (3a) for the ideal case
AA = AB = C,p = 1. The green rectangles and curves represent
the corresponding data when the same-spectrum assumption is
imposed on both 4 and 5, now invoking relation (3b); note that
in contrast to (3a), this relation also upper bounds the values of € 4
and €. For comparison, the black dashed curves indicate the
bounds imposed by the relation ¢ 4¢3 > |Cy5|—which is violated
by our data—and by Ozawa’s relation [11,12]—which is indeed
satisfied, but cannot be saturated. Note that the shown intervals
include 1o statistical errors obtained from Monte Carlo sampling
assuming Poissonian photon-counting statistics.

the estimation procedure to realistic conditions. With
careful characterization of the input states, our method
yields finite intervals for € 4 and &5 that are compatible with
the experimental data, shown as shaded rectangles in Fig. 3.

The weak measurement method.—A weak measurement
[28] aims at extracting partial information from a quantum
system without disturbing it. It is typically realized by
weakly coupling the system to a meter which is then sub-
jected to a projective measurement. In practice, weak mea-
surements cannot be infinitely weak—they disturb the state
onto which they are applied. In our case, the joint measure-
ment of A and B is then approximated on the disturbed state
p after the (semi)weak measurement of A and B, respec-
tively. Note that this disturbance necessarily introduces
mixture to p. As a consequence, it may no longer be pos-
sible to saturate (3a) and (3b); in particular, C%B will be
decreased. As noted in [16], the weak-measurement method
actually works for any measurement strength. However, to
approach saturation, one should set it as low as possible.
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The experimental weak-measurement setup is shown in
Fig. 2(b). We realized the weak measurement using a nonde-
terministic linear-optical controlled-NOT (CNOT) gate [26] act-
ing on our initial signal qubit py = | + y)(+y| = (1 +5,)/2

and a meter qubit in the state |k) = /(1 +«)/2|0)+
/(1 —k)/2|1), which determines the measurement strength
k [28]. The cNOT gate alone, followed by a measurement of
the meter qubit in the computational basis, enables the weak
measurement of B = o, while the weak measurement of A =
o, requires two additional Hadamard gates; see Fig. 2(b). In
both cases, the initial state p, of the signal qubit is transformed
top = (1 + V1 —«?6,)/2.Inpractice, the disturbed states p*
and p? after the weak measurements of A and B, respectively,
necessarily differ slightly. To account for that, we simply
defined p—which enters the definitions of AA, AB, €4, €5,
and Cyp in relations (3a) and (3b)—to be the averaged dis-
turbed state p = 1 (p* + p®).

We characterized the quality of our gate operation using
quantum process tomography [29], obtaining a process
fidelity of 7, = 0.964(1). We further measured a state
fidelity of F =0.99998(6) of the average disturbed
state p, with a reduced purity of P = 0.964(1), correspond-
ing to an average value of x = —0.262(4), for which we
obtain C3, = 0.928(2). For the two-qubit states p?, and
pB, after the interaction (corresponding to the weak mea-
surements of A and B, respectively), we find fidelities of
F=10.9938(6) and F = 0.9958(3). More details on the
quality of the prepared states, the used measurement appa-
ratus, and a full error analysis can be found in [25].

The derivations in the original proposal [21] for this
method require the weak measurements to be perfect. As
for the three-state method, we extend the estimation pro-
cedure for €4 and ez to account for realistic experimental
implementations and obtain intervals of compatible values,
which are shown as rectangles which include 1o statistical
errors in Fig. 4. Furthermore, we find that, if we, instead of
treating them separately, take into account experimental data
from both weak measurements of A and B, the size of these
intervals can be significantly reduced. The corresponding
smaller intervals, shown as dark rectangles in Fig. 4, are
now dominated by statistical errors; see [25] for details.

Discussion.—Our results agree with the theoretical pre-
dictions in all cases under consideration, indicating that
one can indeed come close to saturating the measurement
uncertainty relations (3a) and (3b) in the experiment.
Unsurprisingly, the ranges of compatible values determined
for the weak-measurement method are significantly larger
than those for the three-state method. This is due to the
experimentally more demanding two-photon interaction.
Although we took great care in the preparation of the initial
states as well as in the alignment of the optical setup, residual
errors from imperfect optical components, nonoptimal spa-
tiotemporal mode overlap, and Poissonian counting statistics
decrease the quality of the final data. Note also that SPDC is

FIG. 4 (color online). Results obtained via the weak-
measurement method, presented as in Fig. 3. The darker rectan-
gles represent smaller intervals of compatible values obtained
by using experimental data from both the weak measurements
of A and B. All intervals include 1o statistical errors.

not a true photon-pair source. While the three-state method is
not sensitive to higher-order emissions, the detrimental
effect on the weak measurement method has been limited
by keeping the pump power at a very low level, resulting
in an estimated multipair contribution of 0.000 24.

To put our data into context with previously proposed
measurement-uncertainty relations, Figs. 3 and 4 also show
the relation €465 > |Cyp| [30,31] and Ozawa’s relation
[11,12]. While the latter is universally valid and indeed
satisfied by our data (but not saturated, as it is not tight),
the former relation only holds under some restrictive
assumptions [6,30,31] for our definitions of €4, €3, and
is clearly violated by our data.

Testing the ultimate measurement-uncertainty limits is
crucial for our understanding of quantum measurements.
The new relations introduced in [19] for both the joint
measurement and the measurement-disturbance scenarios,
and our comprehensive extension to experimental imple-
mentations, could play a role in refining a wide range of
measurement-based quantum information protocols, such
as quantum control or error correction. In particular, as
detailed in [25], the optimal choice of approximating func-
tions f(m) and g(m) in a joint-measurement experiment
may differ from the theoretical optimum in the presence
of experimental imperfections. Our technique of optimizing
these quantities to find the optimal trade-off between & 4
and e could be used as a calibration step in high-precision
weak-, or joint-measurement experiments.
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