
A hardware signal processor for
Transition Edge Sensors

Geoffrey Gordon Gillett

BSc.

A thesis submitted for the degree of doctor of philosophy at
The University of Queensland in 2017
school of mathematics and physics

ARC Centre of Excellence for Engineered Quantum Systems

ARC Centre of Excellence for Quantum Computation and Communication Technology

Abstract

Transition Edge Sensors (TESs) are sensitive thermometers that exploit the sharp change in
resistance with respect to temperature in a metal during the transition between the supercon-
ducting and normal states. TES sensitivity has led to the development of calorimeters and
bolometers—devices that measure energy or power via a temperature change—that operate at
wavelengths from near-IR to X-ray.

This thesis documents the design and validation of a hardware signal processor, implemented
in a Field Programmable Gate Array (FPGA), for Tungsten based TES calorimeters with energy
resolution ∼ 0.2 eV. When detecting monochromatic light in the near-IR and visible part of the
spectrum Tungsten TES calorimeters act as photon number resolving detectors with unrivalled
detection efficiency.

0 10 20 30 40 50

Time µs

Vo
lta

ge
(a

rb
ita

ry
un

its
)

Figure 1: Raw analogue signal from a transition edge sensor (TES) after room temperature
amplification, each pulse represents a detection. The optical input is from a ∼830 nm laser
diode driven with a 100 kHz electrical pulse which produces optical pulses with average photon
number 〈n〉 ∼ 2.

The processor takes the analogue output pulses arising from calorimeter detections and
produces a time-stamped stream of event packets containing pulse measurements.

The hardware design is motivated by two needs; first and foremost, to produce a real
time stream of detection time and photon number estimates for use in quantum optics and
information experiments; and secondly to provide a testbed for exploring new strategies and
algorithms for estimating the energy from a detection pulse.

Detection energy is encoded in the shape of the output pulse which changes in different
energy regimes. When detecting low energies the pulse shape linearly scales with energy and
as the detection energy increases this scaling becomes non-linear until the sensor eventually
saturates. The pulses convey energy information in all the energy regimes but with diminishing
resolution. The processor can operate in all regimes by extracting pulses and returning a trace
in the event packet.

Declaration by author

This thesis is composed of my original work, and contains no material previously published or
written by another person except where due reference has been made in the text. I have clearly
stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical
assistance, survey design, data analysis, significant technical procedures, professional editorial
advice, financial support and any other original research work used or reported in my thesis.
The content of my thesis is the result of work I have carried out since the commencement of
my higher degree by research candidature and does not include a substantial part of work that
has been submitted to qualify for the award of any other degree or diploma in any university
or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been
submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library
and, subject to the policy and procedures of The University of Queensland, the thesis be made
available for research and study in accordance with the Copyright Act 1968 unless a period of
embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright
holder(s) of that material. Where appropriate I have obtained copyright permission from the
copyright holder to reproduce material in this thesis and have sought permission from co-authors
for any jointly authored works included in the thesis.

Publications during candidature

Peer-reviewed papers

Experimental Distribution of Entanglement with Separable Carriers,
A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro,
A. G. White, and T. Paterek,
Physical Review Letters 111, 230504 (2013).

Conclusive quantum steering with superconducting transition edge sensors,
D. H. Smith, G. G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold,
A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White,
Nature Communications 3, 625 (2012).

Experimental feedback control of quantum systems using weak measurements,
G. G. Gillett, R. B. Dalton , B. P. Lanyon, M. P. Almeida, M. Barbieri, G. J. Pryde,
J. L. O’Brien, K. J. Resch, S. D. Bartlett and A. G. White,
Physical Review Letters 104, 080503 (2010).

Towards Quantum Chemistry on a Quantum Computer,
B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal,
J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik and A. G. White,
Nature Chemistry 2, 106 (2010).

Publications included in this thesis

No publications.

Contributions by others to the thesis

No contribution by others.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

Research Involving Human or Animal Subjects

No animal or human participants were involved in this research.

Acknowledgements

A personal thank you goes to my advisors; Andrew White, your open mind saw past my
many faults to my strengths and your open door made PhD candidature a stimulating, reward-
ing and enjoyable experience; Alessandro Fedrizzi, your advice was always well considered and
solid, thanks for continuing to offer it even after the occasions I failed to follow it; Marcelo
Pereira de Almeida, thanks for your patience, politeness and tireless effort to help me solve
problems in the lab. I’d also like to thank fellow student Alex Nicolova for her efforts in
developing and implementing the host computer servers and software.

The are many, many more people I encountered during my PhD candidature who deserve
a personal thank you, but I’ll just say this, thanks to all; academic and administrative staff;
students and postdoc’s I shared rooms with or collaborated on experiments with; and workshop
staff; for having the patience and taking the time to attempt to teach an old dog new tricks.

Financial support

This research was supported by an Australian Postgraduate Award (APA) scholarship.

Keywords

transition edge sensor, number resolving photon detector, field programmable gate array, signal
processing, quantum optics, quantum information.

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code:020603 Quantum Information, Computation and Communication, 40%
ANZSRC code:020604 Quantum Optics, 40%
ANZSRC code:090609 Signal Processing, 30%

Fields of Research (FoR) Classification

For code:0205 Optical Physics, 40%
For code:0206 Quantum Physics, 40%
For code:0906 Electrical and Electronic Engineering, 30%

To my family. Without your love, support and understanding this adventure into the world of
professional science would not have been possible.

Contents

I Overview

1 Introduction 1

1.1 Transition edge sensors . 1

1.1.1 Small signal model . 2

1.1.2 Large signals . 5

1.1.3 Detector metrics . 7

1.2 Field programmable gate arrays . 8

2 Processor design 11

2.1 Motivation . 11

2.1.1 The GHZ game . 11

2.1.2 Elements of reality . 14

2.1.3 EPR + Bohm (EPRB) and Bell’s theorem 16

2.1.4 Quantum correlations . 19

2.2 Design goals . 20

2.3 System overview . 21

2.3.1 The multi-channel analyser (MCA) . 24

3 Preliminary testing and analysis 26

3.1 Test apparatus . 26

3.2 Preliminary performance analysis . 28

3.2.1 Data acquisition . 28

3.2.2 Dark noise . 30

3.2.3 Statistical modeling . 31

4 Discussion and conclusions 40

4.1 Discussion . 40

4.2 Conclusions . 43

II Implementation Details 46

5 Stream processing 47
5.1 Notation and terminology . 49
5.2 The streams . 51

5.2.1 Stream transport . 52
5.3 The eventstream multiplexer . 53
5.4 The packet engine and event packets . 54

5.4.1 Event flags . 54
5.4.2 Short event packets . 55
5.4.3 Event packets carrying traces . 56
5.4.4 Event packet fields . 58

6 The measurement pipeline 60
6.1 Input stage . 60
6.2 Baseline correction . 60
6.3 Digital filtering . 61

6.3.1 DSP stage . 61
6.4 Measurement . 63

A Registers 68
A.1 Python Interface . 68

A.1.1 Notation . 70
A.1.2 Global registers . 71
A.1.3 MCA group . 72
A.1.4 ADC group . 74
A.1.5 Channel group . 74
A.1.6 Baseline group . 75
A.1.7 CFD group . 75
A.1.8 Event group . 75

A.2 Serial IO protocol . 77
A.3 Register address map . 80

B Ethernet protocols 86
B.1 Ethernet frames . 86
B.2 MCA frames . 87

B.2.1 MCA header fields . 88
B.3 Eventstream frames . 88

B.3.1 The tick packet . 89

Thesis structure
This thesis is in two parts.
Part I covers the traditional thesis contents; introductory material; data; analysis; and conclu-
sions.
Part II is a reference manual with technical details relating to; hardware implementation; pro-
cessing pipelines; data formats; control register formats; and communication protocols.

Typography

Lower case typewriter font is used to indicate values and fields associated with the processor
and are hyperlinks to the technical descriptions, some are colour coded, examples are:

• registers controlling processor behaviour: pulse_threshold.

• sequence derived from the digitised TES detection signal: f.

• event packets carrying measurements: rise.

• fields in event packets containing measurement information: eflags.

• enumerated types are strings representing a processor register settings: f_extrema.

VHDL generic constants that control the way the processor is implemented are typeset in upper
case typewriter font, eg CFD_DELAY, and are not linked.

Part I

Overview

Chapter 1

Introduction

1.1 Transition edge sensors

Transition Edge Sensors (TESs) are sensitive thermometers that utilise the sharp change in
resistance with respect to temperature during in the transition between the superconducting
and normal metal states. The unprecedented sensitivity of TESs has been a boon in the
implementation of low temperature thermal detectors, specifically bolometers and calorimeters.

Figure 1.1: A calorimeter measures particle energy via a change in temperature. Calorimeters
can be divided into 3 subsystems; an absorber for incoming particles; a thermometer to measure
the absorbers internal energy change due to an absorption; and a weak link to a heat sink to cool
the absorber after a detection while allowing the thermometer time to make the measurement.

1

These types of detector consist of three components; an absorber of particles or incoming
radiation; a thermometer, well coupled to the absorber to measure the change in internal
energy from absorption events; and a weak coupling between the absorber and a cold bath
to remove heat generated during detection and return it to a quiescent state (Figure 1.1).
When such a detector measures power it is generally called a bolometer and when measuring
energy a calorimeter. Though these terms are often used interchangeably, I’ll stick to the term
calorimeter since our use case is measuring photon energy.

TES based calorimeters were pioneered in Blas Cabrera’s group at Stanford in the 1990’s.
Development was mainly aimed at astronomical use and designed to detect higher energy par-
ticles with a particular interest in detectors for the Cold Dark Matter Survey. These detectors
had a separate absorber with large enough heat capacity to handle the high energies and often
employed quasi-particle traps to capture athermal phonons before they thermalised. A TES
was used as the thermometer that reads the internal energy change of the absorber or trap due
to a particle absorption. Tungsten transition edge sensors (W-TESs) were developed for this
purpose and later refined by Sae Woo Nam and his group at National Institute of Standards
and Technology (NIST) Boulder to work at near-IR and optical photon energies. Tungsten was
a natural choice; its phonons and electrons decouple at low temperatures providing a weak cool-
ing link; and its superconducting transition temperature can be tuned. Tuning the transition
temperature simplifies cryogenic requirements while limiting thermal noise and providing the
energy resolution required to resolve near-IR photons. Tungsten has two crystal phases–α and
β–by careful control of the spluttering conditions when depositing the Tungsten film the relative
proportion of the phases can be controlled altering the superconducting transition temperature
[LRN+05].

In the elegantly simple optical W-TES designed and fabricated by our collaborators at NIST
[LCP+10][LMN08] all three calorimeter roles are played out in a thin film of tungsten and the
W-TES thermometer is the calorimeter. Tungsten’s electron gas acts as both absorber and
thermometer while it’s anomalously weak low temperature electron-phonon coupling provides
the cooling link to the crystal lattice acting as the cold bath. I’ll drop the term TES based
calorimeter and the acronym W-TES and simply use the acronym TESs or the word sensor
to refer to these exquisite NIST optical calorimeters. In operation the package of fiber cou-
pled[MLC+11] TESs is placed in an adiabatic demagnetisation refrigerator (ADR) and and
cooled to a bath temperature (Tb) ∼100mK well below the sensors superconducting transition
temperature (Tc) ∼150mK. The sensor is then biased to an operating point in the transition
region between the superconducting and normal metal states using the circuit in Figure 1.2(a).

1.1.1 Small signal model

In the simplest picture of a calorimeter the absorber is characterised by its heat capacity C

and its weak link to the bath at temperature Tb by thermal conductivity G, instantaneous

2

10mΩ I

R(I, T)

Rb

ib

Vb

Rs

TES

×100

Signal

Vf

100

(a) Bias and readout circuit

V

RL
L

I

R(I, T)TES

(b) Thevenin equivalent circuit

Figure 1.2: (a) Biasing and readout. The TES is in parallel with a small shunt resistance (Rs)
forming a divider for the bias current (ib ∼ Vb/Rb as Rb � Rs). The sensor current (I) is
inductively coupled to an array of DC superconducting interference devices (SQUIDs) which
transduce I to a voltage signal which is further amplified at room temperature. Voltage Vf

sets the operating point on the SQUID voltage-flux response to maximise transduction gain
while Vb biases the sensor at an operating point (I0, T0) in the phase transition between the
superconducting and normal metal states (see Figure 1.3).
(b) Thevenin equivalent of the bias circuit used in TES modeling, RL = RsRb/(Rs + Rb),
V = VbRs/(Rs +Rb) and is L the inductance coupling to the SQUID.

absorption of energy E raises the absorbers temperature by ∆T = E/C which relaxes back to
Tb with a natural thermal time constant τ = C/G.

A complete picture sees the TES system as coupled electrical and thermal circuits which
can be described by two differential equations in the two state variables, current (I) and
temperature (T),

L
dI

dt
=V − I (RL +R (I, T)) (1.1)

C (T)
dT

dt
= I2R (I, T)︸ ︷︷ ︸

Joule heating

−K (T n − T n
b)︸ ︷︷ ︸

cooling power

+Eδ (t− t′)︸ ︷︷ ︸
signal power

(1.2)

. The electrical equation (Equation 1.1) describes the Thevenin equivalent of the calorimeter
biasing circuit (Figure 1.2b) equating the voltage across the inductor L with the voltage across
the rest of the circuit, R(I, T) is the current and temperature dependant TES resistance.
Similarly, Equation 1.2 describes the thermal circuit equating energy change to power in and
out of the calorimeter, cooling to the bath is described by a power law with constant K and
exponent n and the signal power term represents deposition of energy E at time t′ under
the assumption the event causes an instantaneous change in temperature of the absorber-
thermometer system.

The cross terms in the equations describe a feedback interaction between the electrical and
thermal circuits known as ETF [NCC+99][Irw95]. The sensor/thermometer is characterised by

3

0 V0

Vb

0

I0

I

Su
pe

rc
on

du
ct

in
g Transition

region
Normal

R(I, T)

I

ib

Rb

Vb

Rs TES

(a) Vb-I curve

Tb T0 Tc

Temperature

0

I

Normal

Transition
region

Super
conducting

Sensor state

I0

(b) Sensor state as Vb is changed

Figure 1.3: Sensor trajectory as bias voltage is changed: At 0V bias the sensor is at the
bath temperature (Tb) well below its superconducting transition temperature (Tc) and has 0
resistance. When the bias voltage (Vb) is increased above 0V the sensor current (I) rapidly
increases until it reaches the critical value and the sensor enters the transition between the
superconducting and normal phases. In the transition the sensor state can be considered a
mixture of the superconducting and normal phases with the proportion of normal phase and
resistance increasing with temperature. Current flowing through the the non-zero resistance
dissipates power increasing the sensors temperature. For any fixed bias voltage the bias current
(ib) is also fixed, variation in the sensors resistance varies the sensor current I by changing
the division of ib between the sensor and the shunt resistance Rs. As I changes so does the
power dissipated which in turn changes the sensor temperature. This feedback between current
and temperature is known as electro-thermal feedback (ETF). For a fixed vb, ETF acts to
stabilise the TES at some equilibrium point int the phase diagram. The blue line indicates
the trajectory of this equilibrium point through the phase diagram as vb is increased. The
equilibrium temperature increases and the equilibrium current decreases as vb increases until
the sensor leaves the transition and enters the normal resistance region. The thin red segments
in the figures are regions where the no stable equilibrium exists. The bias voltage is adjusted
to find the equilibrium point (I0, T0) that achieves the highest gain for converting temperature
change into a current change.

its local logarithmic sensitivity, defined as α ≡ d lnR
d lnT

|Vq by some authors and by a constant
current derivative αI ≡ ∂ lnR

∂ lnT
|Iq and a constant temperature derivative βI ≡ ∂ lnR

∂ ln I
|Tq by others.

4

These logarithmic sensitivity terms describe the shape of the transition. In the case of W-TES
α is positive which when combined with voltage biasing leads to negative feedback between
current and temperature. A rise in temperature increases TES resistance which reduces the
current I flowing the TES arm of the circuit (Figure 1.2a) reducing the power dissipated and
cooling the sensor. The reverse is true for falls in temperature. Negative ETF stabilises the TES
in the transition region at a quiescent equlibruium point and reduces the relaxation time below
that given by the natural time constant τ . Negative ETF acts much the same way as negative
feedback acts in amplifiers to linearise and stabilise the output. The NIST W-TES operate
with extreme negative ETF and the energy deposited by a photon is removed by the reduction
in Joule heating while cooling power to the bath is essentially constant. In the extreme ETF
regime detection energy is proportional to integral of the current pulse.

Small signal models are well developed and illuminating, they are constructed by linearising
the coupled differential equations about the quiescent operating point (I0, T0) and expanding
to first order [IH05][Lin00][McC05] following [IH05] which expands the analysis in [Lin00] and
leaving the detail in the references, the linearised equations 1.1 and 1.2 can be put in a matrix
form

d

dt

(
δI

δT

)
=

(
1
τel

K1

K2
1
τI

)(
δI

δT

)
+

(
δV
L
δP
C

)
, (1.3)

where δI ≡ I − I0, δT ≡ T − T0, δV ≡ V − V0, δP ≡ P − P0, P being the signal power and
P0 = I20R(I0, T0). The two time constants τel and τI characterise the the decay of I to I0 in the
bias circuit and the decay of T to T0 under a constant current. The two lumped constants K1

and K2 are dependant on the operating point and physical parameters (see [IH05] Equation
19).

Homogeneous solutions, δV = δP = 0, are of the form(
δI

δT

)
= A+ eλ+t v+ + A− eλ−t v−, (1.4)

where λ± and v± are the eigenvalues and eigenvectors of the the matrix in Equation 1.3 while
A± are unitless constants. The eigenvalues yield the rise and fall time constants for the current
pulse τ± = 1/λ± and the eigenvectors give the directions for the rise and decay in the sensors
phase diagram (see Figure 1.4a).

1.1.2 Large signals

As the detection energy increases the TES response is no longer described by the linear small
signal model. The response becomes more and more non-linear as detection energy increases
until the sensor is driven out of the transition into the normal regime and is saturated.

Although the superconducting transition is well understood theoretically the precise nature
of TES resistance R(I, T) in real devices outside the realm of the small signal model is not.

5

T0

T

I0

I

Normal
Transition
region

Super
conducting

v+ v+ v+v−

E/C 2E/C 3E/C

0 1 2 3 4 5 6 7 8

time µs

Figure 1.4: Left pane: A qualitative illustration of the sensor state trajectory during photon
detection as described by the small signal model. The eigenvectors (v±) of the matrix in
Equation 1.3 indicate the directions of the the rise (v+) and fall (v−) of the detection pulse
while the eigenvalues are the inverse of the rise and fall time constants. The small signal model
assumes that absorption of energy E instantaneously raises the sensor temperature by E/C

where C is the sensors heat capacity.
Right pane: TES detection pulses after processing by hardware simulation. The optical input
is a ∼ 830 nm 100 kHz pulse train with average photon number ∼ 2. The pulses are inverted to
match the direction of the sensor current changes in the left pane. The collection of pulses are
randomly coloured and illustrate the sensor’s response in different energy regimes. For 830 nm
photons these are roughly; (1-2 photons) the linear regime where the small signal model holds;
(2-4 photons) the non-linear regime where scaling in of the TES response with photon number
is non-linear; (5 + photons) saturation, the TES has been driven out of the transition, its
resistance is no longer dependent on the current and all the enhancements to thermometry and
cooling that the transition region provides no longer apply. While saturated the TES still acts
like a normal cold metal calorimeter with energy information encoded in the time required to
cool back into the transition. The integral of the pulse still encodes energy past saturation
albeit with reduced resolution.

None-the-less several techniques have been explored for improving analysis of TES signals in
the non-linear and early saturation regimes[BAB+15][FFCM+00] [LGM+14].

6

1.1.3 Detector metrics

As photon detectors TESs outperform competing technologies in two detector metrics:

Detection efficiency TESs have an near unity intrinsic detection efficiency for photons that
reach the sensor and a system detection efficiency above 95%.

Dark counts TESs have zero intrinsic dark counts. All output pulses originate from a real
detection, never from some spontaneous event in the detector or low temperature readout
electronics. There are of course background counts from stray light and the high energy
tail of the blackbody spectrum.

Number resolution TESs are one of the few technologies that provide true number resolution
through the ability to resolve energy The phrase “true number resolution” distinguishes
between the use of “number resolution” by technologies using multiplexed non-number
resolving detectors to provide pseudo-number resolution.

. TESs are unique in combining number resolution, very high detection efficiency and low dark
counts, but underperform in the remaining two detector metrics:

Timing jitter The uncertainty in the photon arrival time extracted from a TESs detection
pulse is comparatively large. TES jitter can be improved by reducing inductance in the
readout circuit (Figure 1.2a) which is dominated by the SQUID input coil. Reducing the
inductance decreases the rise time constant (Equation 1.4) and increases the rising slope
of the detection pulse. When timing is based on a threshold crossing the jitter is related
to the TES noise–dominated by Johnson noise and thermal fluctuation across the link
between absorber and bath–and the slope of the signal at the threshold. This improvement
is demonstrated in [LLCT+13] where the use of low input inductance SQUID amplifiers
[DAB+07] reduces the jitter to 4.1 ns at 1550 nm and 2.3 ns at 775 nm. The downside is
the coax cabling required adds heat load to the cryostat and complicates wiring limiting
the number of detectors that can be supported in an ADR. Limited availability of the
low inductance SQUIDs has also limited deployment of these low jitter TES systems. For
the sensors in our lab with relatively high inductance SQUIDs and twisted pair wiring
the jitter is ∼ 80 ns full width half maximum.

Recovery time Also called dead-time. TESs have no intrinsic dead time and continuously
detect but the long relaxation time leads to pile-up of detection pulses. Pile-up occurs
when another photon is detected before the TES has fully recovered from the previous
detection. Piled-up complicates the extraction of the detection energy and time from
a pulse limits the usable TES detection rate. The recovery time can also be improved,
[CLFN11] reports a four fold reduction in the fall time constant without significant loss
of energy resolution. This is achieved by increasing the coupling between the TES and
the cold bath using normal metal heatsinks.

7

I’ll add an informal metric1, ease of use. Compared to the current workhorse detector for
quantum information experiments, the avalanche photo-diode, TESs are extremely difficult to
use. To count photons with an avalanche photo-diode it simply needs to be powered up and
connected to something that can count standard logic pulses. To count photons with a TES
you must cool it to 100mK then you must deal with its analogue output. Ease of use and
accessibility to these remarkable sensors was a factor motivating this project.

Improvements to TESs will ultimately hit limits imposed by the underlying physics and
engineering constraints for producing a stable device [IHWM98]. It would appear unlikely that
TESs will ever become a workhorse detector for quantum information which mostly demands
efficient and rapid counting of single photons. The leading candidate technology for this role
is based on superconducting nanowires which offer; high detection efficiency, not yet at levels
offered by a TES but still improving; very low jitter; low recovery time and counting rates in
hundreds of millions of counts per second; architectures that can provide pseudo-number reso-
lution; and have higher operating temperatures requiring less expensive and more convenient
continuous cycle cryogenics. See chapters 1 and 2 of [Ens05] for a review of both technologies
in the context of quantum optics and information. Nonetheless, TESs find use in in quantum
information experiments that exploit the sensors unique strengths. The unrivaled detection
efficiency of TESs has allowed violation of quantum steering and Bell inequalities without
assuming fair sampling. Number resolution, though not generally required in quantum infor-
mation, allows direct examination of the consequences of assuming a source is emitting single
photons and opens up higher dimensional spaces to photonic quantum information experiments.

1.2 Field programmable gate arrays

Experimental experience with TESs gained during our quantum steering project[SGdA+12]
highlighted the usefulness of realtime detection information, see section 2.1 for more detail. The
methods used by others to extract time and energy information from the detection pulses involve
digitisation of the TES output then processing with software. While software based approaches
allow arbitrarily complex processing to achieve low uncertainty for the energy estimates, they
are difficult to scale past a few TES channels while still providing realtime number resolved
coincidence counts. I decided to explore hardware processing of the signal and the subject of this
thesis is a library of digital circuits designed specifically for processing TES detection pulses.
The circuit library is used to create a prototype hardware signal processor which focuses on
producing a digital stream of event packets with minimal latency between a detection and the
event packet being available. Each detection pulse produces an event packet containing pulse
measurements and a timestamp. The downside of using hardware is that processing complexity
is constrained to processes realisable as circuits.

1A metric of particular importance to PhD students.

8

The modern approach to prototyping digital hardware is to use field programmable gate
arrays (FPGAs) to implement circuits described in a hardware definition language (HDL).
HDL descriptions can be confused with a program written for a general purpose computer
but any similarity is superficial. Though HDLs are general languages capable of universal
computation only a subset of statements in the language are physical and can be realised as a
circuit. A number HDLs exist and the two most widely used emerged in the 1980’s. I choose
to use VHDL a language created by the United States department of defence to address the
problems encountered while re-procuring hardware based on obsolete technologies. VHDL was
designed to document and describe all components of a system so that new circuits could
be constructed that function identically to obsolete parts. Consequently, VHDL has wide
descriptive capabilities making it quite verbose but offers higher levels of abstraction than the
alternative HDL from the period, Verilog.

Since the 1980’s other HDLs have emerged, most notably SystemC and System-Verilog,
offering levels of abstraction approaching that of general computer languages which potentially
makes complicated circuits easier to verify, modify, maintain and reuse. Unfortunately tools
were not available for these languages at the beginning of this project. Recent developments
include tools that convert algorithms written in C into HDL circuit descriptions which may
lower the entry barrier for those wanting to add to the library.

Back in the day, digital design and prototyping involved discrete components and a “bread-
board” which allowed the connections between components to be adjusted to easily change the
circuit. FPGAs are the evolution of this, they contain large array of components or resources
embedded in a reconfigurable routing matrix allowing the connections between resources to
be changed to create different circuits. FPGA resources can be divided into two categories;
fabric resources are ubiquitous and arranged in cells containing fundamental low level digital
components, the fabric cell array covers the majority of the FPGA chip die; hard cores are
dedicated silicon performing a specific function, effectively internal chips. Fabric resources are
general and can be used to construct any circuit but the many connections between the low
level components required to implement a complex circuit in fabric limit the rate at which it
can be clocked. Hard cores provide dedicated functionality for example, random access mem-
ory (RAM), transceivers or multiply and accumulate block for use in digital signal processing
(DSP) and run at speeds comparable to discrete chips.

Digital circuits are built from two types of logic; combinatorial logic elements have outputs
that change whenever any input changes, for example a logic gate; sequential logic elements
have outputs that change synchronously with a clock edge, the canonical example being a
register or flip-flop. In order to function reliably and deterministically the inputs to sequential
elements must not change in a window around clock edge defined by the setup and hold time,
see Figure 1.5. When all sequential elements in a circuit satisfy the setup and hold requirements
the circuit is said to meet timing.

The HDL circuit description is processed by a toolchain which proceeds in three phases.

9

D Q

clk

clk

D

Q

ThTs ThTs

Figure 1.5: A register, also know as a D-type flip-flop, is a sequential logic element. The output
(Q) is the value of the input (D) sampled at a rising transition of the clock signal (clk). To
function correctly the input must be stable during the aperture that extends from the setup
time (Ts) before the clock transition the the hold time (Th) after it. If this timing constraint
is violated the register can enter a metastable state which eventually decays to either Q = H

or Q = L in a non-deterministic manner.

synthesis infers generic circuit elements from the HDL statements and creates a netlist de-
scribing the circuit. Mapping takes the netlist and replaces the the generic elements with the
specific resources available in the particular FPGA. Place and route takes the mapped netlist
and places each mapped element in the FPGAs resource array in such a way that the FPGAs
routing matrix can realise all netlist connections. This placement is then optimised over a
number a passes with the goal of ensuring the design meets its timing constraints. The placed
and routed design is then converted to a bitstream that can be uploaded to the FPGA to realise
the design.

I used a Xilinx 6 series FPGA (Virtex6) to implement the processor which uses a toolchain
called ISE which was created at the time Xilinx was producing 3 series devices. Since I began
the project Xilinx released 7 series devices and a new toolchain called Vivado. Unfortunately
Vivado is not backwardly compatible and only works with 7 series devices and above. Xilinx
make excellent FPGA hardware but the software leaves a lot to be desired, particularly ISE.
Vivado appears to be a vastly better tool-chain. The processor is stuck at the compatibility
break and needs to be ported from ISE to Vivado. ISE can only meet timing for the design when
two processing channels are instantiated. Four are possible when specific placement constraints
are added for the place and route optimisation but any design changes require new constraints
to be found. Vivado appears to have better optimisation routines and the Virtex7 has faster
routing and more resources. When the design is ported to Vivado I expect 8 channels will meet
timing routinely and without extra constraints.

10

Chapter 2

Processor design

2.1 Motivation

My first experience using TESs in a quantum information experiment was working on a project
that violated a quantum steering inequality while closing the detection loophole [SGdA+12].
Steering is the ability to remotely prepare part of a multipartite state into different ensembles
of states by performing different measurements on another part. Steering requires and serves
to certify entanglement which is a strong non-classical correlation between subsystems of a
multipartite quantum state.

2.1.1 The GHZ game

Non-classical correlation is perhaps best described by considering a cooperative three player
game called the GHZ game[Mer85][Fin][Bac]. During play the players – Alice, Bill and Clarisse
– are isolated in separate laboratories and communication between labs is physically impossible.
Each lab contains a blank display that will show a symbol–either X or Y–during play as well
as two mutually exclusive buttons labeled +1 and −1 that each player uses to respond to
the symbol. Before being isolated the players are told the rules of the game and are free to
communicate and share information and resources in an attempt to devise a foolproof strategy.
Here I use the term foolproof to describe strategies that always win. The two rules are; when
a symbol is displayed each player must respond by pressing a button; and either the symbol
X will be displayed in all labs, or X will be displayed in exactly one lab while Y is displayed
in the others. The players win the game if the product of their responses is +1 when all lab
displays show X and −1 otherwise.

The possible games and the winning response products can be represented as a set of four

11

equations

rAXr
B
Xr

C
X = +1 (2.1)

rAXr
B
Y r

C
Y = −1

rAY r
B
Xr

C
Y = −1

rAY r
B
Y r

C
X = −1.

The LHS of (2.1) is the product of terms of the form rij indicating the response of player
i ∈ {A(lice), B(ob), C(larise)} to symbol j ∈ {X,Y } while the RHS is the response product
required to win. Multiplying the equations together reveals a contradiction,

product of LHS of 2.1 = (rAX)
2(rAY)

2(rBX)
2(rBY)

2(rCX)
2(rCY)

2 = +1 (2.2)

product of RHS of 2.1 = +1×−1×−1×−1 = −1.

This contradiction proves that no foolproof deterministic strategy exists, ie there are no fool-
proof strategies where the players have predetermined their responses to a symbol.

A similar argument proves that no foolproof non-deterministic strategy exists. In non-
deterministic strategies each player i responds to symbol j by pressing +1 with probability pij

and pressing −1 with probability 1− pij. Under the non-deterministic strategy the rij terms on
the LHS of (2.2) become expectation values 〈rij〉 with values in the interval [−1,+1]. A similar
contradiction occurs because the product of the squared expectation values must be greater
than or equal to 0.

In the most general case the players share some correlated resource before being isolated
in the labs. The correlations shared through the the resource cannot be dependant on the
symbols the players see during play as the symbols are unknown when they are able to share.
Resources the players share can be described as conditions on extra shared variables which can
have values Λ, letting ρ(λ) be the probability that the variables have a particular value λ ∈ Λ a
description of every classical strategy allowed under the rules of the game can be constructed.
Equations 2.1 become, ∫

dλ ρ (λ) rAX (λ) rBX (λ) rCX (λ) = +1∫
dλ ρ (λ) rAX (λ) rBY (λ) rCY (λ) = −1∫
dλ ρ (λ) rAY (λ) rBX (λ) rCY (λ) = −1∫
dλ ρ (λ) rAY (λ) rBY (λ) rCX (λ) = −1,

where rij (λ) is the response of player i to symbol j when the shared variables have value λ.

12

Since ρ (λ) is a probability a foolproof strategy can only exist if for some particular λ

rAX (λ) rBX (λ) rCX (λ) = +1

rAX (λ) rBY (λ) rCY (λ) = −1

rAY (λ) rBX (λ) rCY (λ) = −1

rAY (λ) rBY (λ) rCX (λ) = −1.

Which raises the same contradiction (2.2) proving that no strategy based on classical resources
is foolproof.

When the players have access to quantum resources a foolproof strategy is possible. Consider
the tripartite spin-1

2
entangled state |GHZ〉 = 1√

2
(|000〉+ |111〉) where 0 (1) indicates spin up

(down) in the Pauli z basis1. If each player takes a subsystem of a |GHZ〉 state into their lab
then measures it the Pauli basis corresponding to the symbol displayed and responds with the
outcome they can always win.

Consider the set of commuting observables

σA
x σ

B
y σ

C
y (2.3)

σA
y σ

B
x σ

C
y

σA
y σ

B
y σ

C
x ,

though the x and y components of the spin of an individual particle anti-commute
{
σi
x, σ

i
y

}
=

σi
xσ

i
y + σi

yσ
i
x = 0, the commutator of any pair in the set introduces an even number of anti-

commutations which cancel out. |GHZ〉 is a simultaneous eigenstate with eigenvalue −1 of all
three and the observables correspond to the three possible games in which only one lab displays
the symbol X. The product of the individual players measurement outcomes is equivalent to
the eigenvalue −1 so they always win games where only one lab displays X. Similarly the
observable

σA
x σ

B
x σ

C
x (2.4)

commutes with the previous three (2.3) and |GHZ〉 is simultaneously an eigenstate of all four.
The eigenvalue for σA

x σ
B
x σ

C
x is +1 so when all labs displayX the product of the players responses

is +1 and they always win.
Why is it so? The players are allowed arbitrary sharing and communication to establish

arbitrary correlations between themselves yet a foolproof strategy does not exist if the resources
they share are classical but does if they are quantum. The only constraints are that the sharing
must be done in ignorance of what symbol each player will see as that information does not
yet exist and once that information does exist it cannot be shared. Always winning the GHZ
game is impossible classically–which is the standpoint of our common sense and intuition–what
is it about quantum mechanics that allows a foolproof strategy? Perhaps the answer lies in
questions about when and where information exists.

1Most famously analysed by Greenberger, Horne and Zeilinger [GHSZ90]

13

2.1.2 Elements of reality

When using classical resources in the GHZ game the information governing player responses
exists at the time they establish correlations between themselves then waits to be revealed once
they enter the lab and see a symbol. When the the information dictating player responses
exists before the symbol is known the contradiction in (2.2) is inevitable and it is impossible to
always win the game.

Quantum mechanics introduces the notion that physical properties generally have no ob-
jective reality independent of the act of observation and the act of measuring creates what
is measured. Uncertainty relations are understood not just as a prohibition on what is co-
measurable but on what is simultaneously real. Underlying this is the generally unavoidable
disturbance quantum measurement has on what is measured through quantum back-action. In
general the more information is gained by measurement of a quantum system the greater the
disturbance to it [BMG+07][GDL+10].

When the players use quantum resources the information on which they base their responses
does not exist when they share resources prior to entering the lab, it is brought into existence
when they see the symbol and perform the corresponding measurement. The four observables
(2.3-2.4) all commute and |GHZ〉 is simultaneously an eigenstate of them all. Since the corre-
sponding eigenvalue is the product of the of the three measurement outcomes on the individual
particles, measurement on any two particles determines the the outcome of the third. The rules
of game are designed to perfectly exploit this remarkable non-classical correlation in the |GHZ〉
state which assures the players always respond in a coordinated way and win. A quantum
resource allows players win through what Einstein dubbed “spooky action at a distance”.

This notion that the act of measurement creates what is measured troubled Einstein. Pais,
who often accompanied Einstein on his lunchtime walk home from the Institute of Advanced
Study in Princeton, recalls[Pai79]

We often discussed his notions on objective reality. I recall that during one walk
Einstein suddenly stopped, turned to me and asked whether I really believed that
the moon exists only when I look at it. The rest of this walk was devoted to a
discussion of what a physicist should mean by the term “to exist”.

Einsteins position was first and most famously formalised in the 1935 Einstein, Podolsky and
Rosen (EPR)[EPR35], which asks “Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?”. The paper contains two assertions

• Quantum theory is incomplete.

• Incompatible observables cannot be simultaneous elements of reality.

and the authors argue that only one assertion can hold.
The EPR paper examines the interpretation of quantum state vectors through a thought

experiment on a quantum system consisting of two particles moving away from each other such

14

that their total linear momentum is zero. In this arrangement the position and momentum
of the particles are perfectly correlated. By measuring the momentum of one particle (p) the
momentum of the other can be inferred from the correlation (−p), similarly for position. The
two systems are measured when they are well separated and in such a way that no signaling
between them is possible, ie information from measurement of one particle cannot influence
measurement of the other.

EPR make two assumptions without directly addressing them; locality prohibits distant
measurements of one particle disturbing what is considered “real” for the other system; and
separability establishes each system has a separate reality in the form of an individual physical
state.

In a nutshell incompleteness argument is; Spatially separate particles have individual real
physical states (separability); if particles are spatially separated measuring or not measuring one
particle cannot directly affect the reality of others (locality); if quantities on separate particles
are strictly correlated those quantities have definite values (often called the EPR lemma). From
the lemma, the system described in the paper has simultaneous definite values of both position
and momentum and since these values cannot be inferred from quantum mechanical formalism
the quantum mechanical description must be incomplete.

The EPR lemma is arrived at through the slippery notion of “elements of reality” which are
defined in the paper by what is now known as the EPR criterion of reality:

If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of reality corresponding to that quantity.

The reality criterion asserts that a quantity has a value that exists irregardless of whether it
measured or not when we can predict the value of that quantity with certainty.

The |GHZ〉 state, which had not been analysed at the time of the EPR paper, makes it
clear that the EPR criterion of reality is in direct conflict with the predictions of quantum
mechanics. Measurement of |GHZ〉 using the observables in (2.3) yields results

rAXr
B
Y r

C
Y = −1 (2.5)

rAY r
B
Xr

C
Y = −1

rAY r
B
Y r

C
X = −1.

where rij is the outcome of measuring σj for subsystem i and the RHS is the eigenvalue of
|GHZ〉 for the observable. We can predict the value of the outcome of a measurement on any of
the subsystems with certainty by measuring the other two. By the EPR reality criterion each
rij corresponds to an element of reality and has a value that exists before it is measured. The
product of the equations in (2.5) is rAXrBXrCX = −1 since rij = ±1. This conflicts with a direct
measurement of σA

x σ
B
x σ

C
x which has result rAXrBXrCX = +1.

15

Einstein further developed, focused and clarified his incompleteness argument in later publi-
cations in which the concept of “elements of reality” thankfully falls by the wayside. These later
publications draw directly on the the notions of separability and locality implicitly assumed in
the original EPR paper to make a case for incompleteness. The arguments between the Ein-
stein and Bohr camps over the completeness of quantum mechanics is considered the greatest
philosophical debate of early quantum theory. Bohr published a refutation of the original EPR
paper under the same title in the same journal. A less obfuscated and more accessible view
opposing the realist perspective is found in a 1954 letter from Pauli to Born[EM]

As O. Stern said recently, one should no more rack one’s brain about the problem
of whether something one cannot know anything about exists all the same, than
about the ancient question of how many angels are able to sit on the point of a
needle. But it seems to me that Einstein’s questions are ultimately always of this
kind.

Surprisingly Pauli and Stern were wrong, brain racking by Bohm and Bell led to results that
made the EPR claims experimentally testable.

2.1.3 EPR + Bohm (EPRB) and Bell’s theorem

In the late 1950’s Bohm[BA57][BA60] began considering ideas presented by EPR and devel-
oping thought experiments based on incompatible measurements of spin rather that position
and momentum. Inspired by Bohm’s thought experiments Bell pioneered the work that led
to the theorem that now bears his name. Bell’s Theorem is is a collection of results proving
that local realistic theories like the one proposed by EPR, also known as local hidden variable
theories, are incompatible with quantum mechanical predictions. Different local hidden vari-
able theories give different meanings to “local realistic”. In Bell’s 1964 paper[Bel64] the realism
consisted of postulating that in addition to quantum states there exist “complete states”, or
hidden variables, that determine measurement results. The paper derives an inequality that
bounds the correlation that can be observed in an electron spin experiment given particu-
lar local realist assumptions. Bell’s original work has been generalised and refined and now
a plethora of inequalities that bound correlation for local realist theories are collectively re-
ferred to as Bell inequalities. The Bell inequality derived by Clauser, Horne, Shimony and
Holt (CHSH)[CHSH69] was applicable to to photon polarisation and at the time opened the
possibility of more tractable experimental realisations than provided electron spin as originally
analysed by Bell.

Hidden variable models are probabilistic. Let ρ (λ) be a probability distribution over the
space of complete states Λ where λ ∈ Λ represents a particular complete state. Two parties,
Alice and Bob, are well separated and each makes measurements on one particle of and entan-
gled pair. Each party can perform one of two measurements; Alice’s measurement operators

16

are mA ∈
{
A±, A

′
±
}
with respective measurement outcomes denoted a± and a′± which are col-

lectively labeled rA; similarly, Bobs measurement operators are mB ∈
{
B±, B

′
±
}
with outcomes

b± and b′± which are collectively labeled rB. All outcomes are ±1. The following probabilities
are assumed to be well behaved (∀λ ∈ Λ);

p
(
rA|mA,mB, rB, λ

)
and (2.6)

p
(
rB|mA,mB, rA, λ

)
(2.7)

are the probabilities of one parties outcome conditioned on the other parties outcome when the
complete state is λ; and

p
(
rA, rB|mA,mB, λ

)
(2.8)

is the probability of the outcomes of joint measurements by both parties when the complete
state is λ.

Locality results from the following assumptions; remote outcome independence assumes one
parties outcome does not depend on the outcome of other, ie that

p
(
rA|mA,mB, rB, λ

)
≡ p

(
rA|mA,mB, λ

)
and (2.9)

p
(
rB|mA,mB, rA, λ

)
≡ p

(
rB|mB,mB, λ

)
;

while remote context independence assumes that one parties outcome does not depend on the
measurement choice of the other

p
(
rA|mA,mB, λ

)
≡ p

(
rA|mA, λ

)
and (2.10)

p
(
rB|mA,mB, λ

)
≡ p

(
rB|mB, λ

)
.

The conjunction of these assumptions is equivalent to the factorisation condition[Jar84]

p
(
rA, rB|mA,mB, λ

)
≡ p

(
rA|mB, λ

)
p
(
rB|mB, λ

)
(2.11)

which is often referred to as Bell locality. For Einstein, locality restricts influences on the “real”
physical states of spatially separated systems. For Bell, locality is focused instead on influences
on the outcomes of joint measurements on separated systems.

Noting that the probability measurements mA and mB have outcomes rA and rB is

p
(
rA, rB|mA,mB

)
=

∫
dλ ρ (λ) p

(
rA|mA, λ

)
p
(
rB|mB, λ

)
(2.12)

and defining the correlation between measurements as the expectation value of the product of
their outcomes, we have

c
(
mA,mB

)
=
∑
i,j

rAi r
B
j p
(
rAi , r

B
j |mA,mB

)
, (2.13)

17

where the sum is over all measurement outcomes. The CHSH inequality bounds a particular
combination of of measurement correlations

SCHSH = c(A,B) + c(A,B′) + c(A′, B)− c(A′, B′). (2.14)

SCHSH can be bounded by fixing λ and examining the sum of products

S =
∑
i,j

aip (ai|A, λ)
[
bjp (bj|B, λ) + b′jp

(
b′j|B′, λ

)]
+

a′ip (a
′
i|A′, λ)

[
bjp (bj|B, λ)− b′jp

(
b′j|B′, λ

)]
. (2.15)

Since that absolute value of the terms of the form aip (ai|A, λ) are bounded by by 1, the absolute
value of each line in the sum is bounded by 2. When value of one of the square brackets is
2 the value of the other is 0 so the absolute value of the sum is bounded by 2. Multiplying
(2.15) by ρ(λ) and integrating over λ gives SCHSH , so |SCHSH | ≤ 2. Any Bell inequality bounds
correlation that can be observed under the assumptions used to construct it. In the case of
the CHSH inequality the assumption is Bell locality (2.11) which is a consequence of assuming
remote outcome independence (2.9) and remote context independence (2.10).

The CHSH correlation between the measurement operators A = 1
2
(I ± σz), A′ = 1

2
(I ± σx),

B = 1
2
(I ± 1√

2
(σx + σz)) and B′ = 1

2
(I ± 1√

2
(σx − σz)) for the entangled state |Ψ−〉 = 1√

2
(|01〉 −

|10〉) is 2
√
2, which is the maximum violation of the CHSH inequality predicted by quantum

mechanics.
Any Bell test must meet a number of experimental requirements which are referred to as

loopholes. Failure to address these loopholes permits local realist explanation of the observed
measurement correlation. The three most significant loopholes are; sampling loopholes arise
when there there are inefficiencies in measurement due to loss between source and detectors,
particularly, inefficient detection or inefficiencies establishing the coincidence between detec-
tions used to calculate correlations; the locality loophole arises when there is the possibility of
information from measurement on one system influencing measurement on the other; and the
freedom of choice or measurement independence loophole concerns the independence of mea-
surement choice and the internal state of the physical system being measured. Closing the
locality loophole is reasonably straight forward by assuring appropriate separation between the
detectors but large separations can can increase loss making simultaneously closing sampling
loopholes difficult.

Heralding efficiency, the probability of detecting one particle in a pair conditioned on de-
tecting the other, is key to closing sampling loopholes without assuming that the loss is fairly
sampled. Fair sampling assumes that loss due to measurement inefficiency is not biased in
a way that enhances measurement correlation in the cases where detection is successful. By
assuming the opposite is true, that loss maximally enhances correlation, a new bound for a Bell
inequality can be derived[Lar98]. For the CHSH inequality the bound becomes 4

η
−2 where η is

the heralding efficiency. A violation of the CHSH inequality by quantum mechanics requires a

18

heralding efficiency > 2(
√
2− 1). All early Bell tests using photons were performed under the

fair sampling assumption. The unrivaled TES efficiency and lack of dark counts played a key
role in recent Bell tests using spontaneous parametric down-conversion (SPDC) as the source
of photon pairs [SMSC+15][GVW+15] that simultaneously close the locality and measurement
independence loopholes without assuming fair sampling.

2.1.4 Quantum correlations

Mathematically, entanglement is associated with non-separable quantum states, ie states that
cannot be written as a tensor product of subsystems. Non-separable quantum states can be
arranged in a hierarchy by correlation strength; Bell non-local states that are capable of a
Bell violation; steerable states are a super-set that includes the Bell non-local states and can
violate a quantum steering inequality. The degree of non-classical correlation increases from
non-separable to steerable to Bell non-local states.

Steering is the ability to remotely prepare one subsystem in different ensembles of states
by performing different measurements on another subsystem. This concept was introduced
by Schrödinger to generalise the EPR paradox for pure bipartite quantum states and is often
referred to as EPR steering. Steering was put into a quantum information framework[WJD07]
and inequalities developed that limit the level of correlation that can be observed without
invoking quantum steering as an explanation, in a similar way that a Bell inequality limits the
amount of correlation that can be explained by local realist theories. In quantum information
terms, two parties that each receive a subsystem of a bipartite state can violate a steering
inequality to certify they share entanglement.

Nonclassical correlation is a considered a fundamental resource powering the advantages
quantum information processing provides over its classical counterpart. During the early devel-
opment of of quantum information theory non-classical correlation was thought to be restricted
to non-separable quantum states, ie that zero entanglement implied zero non-classical corre-
lation. Later the concept of discord[OZ01] was introduced. Discord is the difference in two
classically equivalent expressions for the mutual information between systems. Some separa-
ble mixed quantum states have non-zero discord and these states have no classical analogue.
Zero discord and zero entanglement became the boundary for classical/non-classical correla-
tion. Recent work[FP12] has compared nonclassicality criteria developed through quantum
information theory and those derived from physical constraints on quantum phase space and
quasi-probability distributions. It is found that the two approaches yield maximally nonequiv-
alent nonclassicality criteria, implying that non-classical correlations exist in the absence of
both entanglement and discord.

We will probe the classical/nonclassical boundary using the number resolving capabilities of
TESs and my hardware processor. The entanglement and discord free nonclassical correlation
can be be found in higher dimensional spaces and a resource for these correlations can be

19

generated using SPDC. In SPDC a nonlinear crystal is pumped by a laser and the crystal
spontaneously down-converts a single pump photon into a pair of photons with half the energy.
SPDC outputs a two mode squeezed state[KLM01]

|Ψ〉 =
√

1− |λ|2
∞∑
n=0

λn |n, n〉 ,

where λ is the squeezing parameter and |λ|2 is proportional to the pump power. The proba-
bility of producing the Fock state |n, n〉 consisting of n photon pairs is p(n) = (1 − |λ|2)|λ|2n

and increases with pump power. Quantum information experiments normally use SPDC to
approximate a heralded source of single photons where detection of a photon in one mode her-
alds the occupation of the other. This approximation improves with decreasing pump power
as the probability of the higher order terms diminishes. These higher order terms are generally
avoided as they contribute to noise in a quantum circuit[WGR+08]. In our search for nonclas-
sical correlation in the absence of discord and entanglement we will pump the SPDC with as
much power as possible as the nonclassical resource depends on terms of all orders.

After phase randomisation to remove any entanglement or discord the resource state is:

ρAB =
∑
n

p(n) |nA〉 〈n |⊕|nB〉 〈n| ,

where p(n) is the probability of producing n pairs and nA (nB) are the number of photons in
mode A (B). The projects theorists have devised a game, similar to the GHZ game, where
players with access to ρAB have an advantage over players that have only classical resources
at their disposal. Unlike the GHZ state the correlations in ρAB are not perfect so no foolproof
strategy exists but the quantum strategy has a higher probability of winning compared to any
classical one. The number resolving capability of TESs is required for an experimental demon-
stration as the nonclassical correlation exists between the results of each players measurement
of the number of photons they have.

2.2 Design goals

My practical introduction to TES was while working on a project that violated a steering
inequality[SGdA+12]. The High system detection efficiency of TESs enabled an unprecedented
heralding efficiency of ∼ 62% and violated the inequality by 48 standard deviations. A record
that was only broken in recent Bell tests[SMSC+15][GVW+15]. To produce a countable signal
from the TES output I used a clunky arrangement of equipment we had on hand. Consisting of
an analogue constant fraction discriminator (CFD) and nuclear instrumentation module logic
both pieces of equipment were designed for nuclear experiments. A long dead-time had to be
imposed to ensure the CFD did not trigger on noise during the falling part of the TES pulse
which reduced the conditional detection efficiency we could achieve. Despite this, the setup had
the advantage of providing near real-time information useful while setting up and tuning the

20

circuit. The standard technique for analysing TES output involves digitising entire pulses then
processing them using software to extract timing and energy information. While the software
approach can provide near realtime information for a few channels it is difficult to scale beyond
that. The great advantage of processing the entire pulse in software is that it allows arbitrarily
complex processing which can provide energy uncertainty close to the limit set by the sensors
intrinsic energy resolution.

Experience gained during the steering project informed and motivated my design and the
primary goal was to provide realtime detection information in a scalable way while minimising
impact on the underlying sensor efficiency. My approach to achieving this goal was to process
the signal in hardware rather than software and trade some energy certainty for realtime access
to information from larger numbers of sensor channels all operating at the highest detection
rates TESs can support. TESs have a wide dynamic range[LGM+14] with increasing energy
uncertainty as the number of photons detected increases. The processor is designed for quantum
information experiments which generally use “single” photon sources and to operate in the
region were detections involve less than twenty 820 nm photons. The design process resulted
in a library of circuit components that create and transmit a stream of event packets each
containing measurements of a detection pulse and a timestamp. The processor as described in
this thesis is a particular arrangement of of these library components used for evaluation and
testing.

A secondary goal was to provide a platform for exploring techniques for extracting infor-
mation from the TES signal. At one extreme are techniques that use a vector record of the
entire pulse and at the other scalar measurements such as pulse height and area that the
current processor implementation returns. Software processing of full pulses delivers the best
energy resolution which translates into photon number certainty for a particular photon wave-
length. Most of the single photon sources we use in the lab have a wavelength no greater than
820 nm and each photon carries relatively high energy. At these shorter wave lengths degraded
energy resolution has less effect on number uncertainty due to the higher energy per pho-
ton. Preliminary analysis (subsection 3.2.3) of hardware processing indicates the simple pulse
area measurement provides sufficient number certainty for the experiments we have planned.
The processor can also optionally capture entire pulse records in conjunction with the scalar
measurements and this information can be used to improve how the scalar measurements are
implemented. The trace information can also be used to develop other hardware implementable
measurements returning shorter vectors lying somewhere between the two extremes of scalar
and full pulse measurement.

2.3 System overview

The analogue TES signal is digitised by an analogue to digital converter (ADC) which outputs a
sequence of 14 bit integers called samples. The ADC sequence is labeled rawin and each sample

21

−2000 timestamp 2000 4000 6000

time (ns)

baseline
slope_threshold

pulse_threshold

trace_pre

length
rise_time

ptime[0]

sl
op

e_
ma

x

mi
ni

ma

ri
se

_h
ei

gh
t

filtered (f)
rise
slope (s)

byte
0 1 2 3 4 5 6 7

24 size tflags eflags time

32 area length trace_pre

 pulse header

48 height rise_time minimum ptime

...

height rise_time minimum ptime

 rises

sample[0] sample[1] sample[2] sample[3]

...

sample[n-3] sample[n-2] sample[n-1] sample[n]

 sequence record

Figure 2.1: Measurement is based on detecting rises in the filtered TES signal (f). Zero crossings
of the slope (s) identify the local minimum and maximum of f. Rises are sub-sequences of f

extending from a minimum to the following maximum and are considered valid when the height
exceeds pulse_threshold and s has crossed slope_threshold during the rise. A pulse is a
sub-sequence of f from the start of a valid rise to the next falling crossing of pulse_threshold

by f. Measurements are performed on each pulse and returned in an event packet along with
a timestamp and optionally a sequence record. The shaded region is returned as the area

measurement. The height register controls what appears in the height field, for example it
can record slope_max instead of rise_height. More details of the measurement process can be
found in chapter 6 and descriptions of the registers controlling measurement in subsection A.1.8

22

estimates the average voltage at the ADC input over a ∼ 4 ns time window and 250 million
samples are produced per second. The processor operates on rawin and derives other sequences
from it in order to extract detections and energy measurements. See chapter 6 for details.

The two most important derived sequences are the outputs of a reconfigurable two stage
finite impulse response (FIR) filter (see section 6.3). The first stage is configured as a low pass
filter to remove high frequency noise and produces the filtered sequence–labeled f–which is the
sequence that is measured. The second stage is configured as a differentiator and produces the
slope sequence–labeled s–which is used to identify rises in f and establish which rises constitute
a detection.

200 300 400 500 600 700

pulse threshold timing - detection time relative to herald (ns)

0

5000

10000

15000

20000

25000

co
u

n
t

−200 timestamp 200 400

time (ns)

pulse threshold

1 photon

2 photons

3 photons

4 photons

5 photons

6 photons

7 photons

8+ photons

Total

100 150 200 250 300 350 400 450 500

slope threshold timing - detection time relative to herald (ns)

0

10000

20000

30000

40000

50000

60000

70000

co
u

n
t

−200 timestamp 200 400

time (ns)

pulse threshold

1 photon

2 photons

3 photons

4 photons

5 photons

6 photons

7 photons

8 photons

9 photons

10 photons

11+ photons

Total

200 300 400 500 600 700

cfd low timing - detection time relative to herald (ns)

0

10000

20000

30000

40000

50000

60000

70000

co
u

n
t

−200 timestamp 200 400

time (ns)

pulse threshold

1 photon

2 photons

3 photons

4 photons

5 photons

6 photons

7 photons

8 photons

9 photons

10 photons

11+ photons

Total

350 375 400 425 450 475 500 525 550

max slope timing - detection time relative to herald (ns)

0

20000

40000

60000

80000

100000

120000

140000

co
u

n
t

−200 timestamp 200 400

time (ns)

pulse threshold

1 photon

2 photons

3 photons

4 photons

5 photons

6 photons

7 photons

8 photons

9 photons

10 photons

11+ photons

Total

Figure 2.2: The timing register controls the point in a rise that is timestamped. The individual
panels show histograms of the difference in timestamps from two processor channels. One chan-
nel processes the output from a TES while the other channel processes the same electrical pulse
that drives the laser diode and heralds possible detections. Grey histograms show the distri-
butions of the relative times between detections and the herald irregardless of assigned photon
number while the coloured histograms show the distribution of times for detections assigned the
respective photon number. The bin width of the histograms is 4 ns which is temporal resolution
of the processor. The insets show the alignment of traces under the different timing settings,
each coloured curve in the inset is the average over all captured traces assigned the respective
photon number. The photon number classification process described in subsection 3.2.3. Note
that these timing diagrams are not necessarily taken using the same optical inputs or the same
TES. Conditions differ between diagrams and the datasets in subsection 3.2.1 and are only a
guide to the different forms the number dependant timing jitter takes with different timing

register settings.

23

Zero crossings of s are used to identify rises. Rises are sub-sequences of f that extend from a
local minimum, identified by a rising zero crossing of s, to the next local maximum at the next
falling zero crossing of s. A rise is valid and considered a detection when its maximum is above
pulse_threshold and s has crossed slope_threshold during the rise. A pulse starts at the
beginning of a valid rise and extends to the next falling crossing of pulse_threshold by f (see
Figure 2.1). For each pulse the processor returns an event packet containing measurements of
the pulse, a timestamp and optionally a sequence record. The sequence record, called a trace,
starts trace_pre samples before the timestamp and records every trace_stride + 1 sample
from the start until trace_length samples are recorded. The point at which the timestamp
is generated is controlled by the timing register, see Figure 2.2. Section 5.4 describes of the
contents of the different types of event packets, chapter 6 provides details of the measurement
processes and Appendix A describes the registers that control the processor.

2.3.1 The multi-channel analyser (MCA)

−2000 0 2000 4000 6000 8000 10000

extreme value of the slope signal (s)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

co
u

n
t

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Figure 2.3: Distribution of the filtered TES sequence, f, captured by the multi-channel analyser
(MCA). The MCA is capable of accumulating samples at the 250 million samples a second rate
produced by the ADCs, so the histogram counts the frequency of every integer in the sequence
f. The main body of the distribution represents the noise produced by the TES and associated
electronics, the long tail on the right is due to the optical signal. The inset shows a zoomed
view on the optical signal which continues past the abrupt termination at the last MCA bin.
The vertical dashed line indicates the pulse_threshold setting.

The processor includes a MCA, which is a rather anachronistic term for a device that gathers
the distribution of a measurement as a histogram. My MCA design is capable of counting every
sample of a sequence while continuously transmitting the distribution of the sequence to the
host computer (see Figure 2.3). It is of particular use in determining threshold register settings

24

and descriptions of the registers controlling the MCA can be found in subsection A.1.3.
Measurements and settings are relative to a baseline assigned the value 0. A design as-

sumption is that the baseline should be at the mode of the distribution of f (Figure 2.3). AC
coupling to the TES output preamplifier (Figure 1.2) sets the 0 volt value at the mean of the f

distribution. The position of the mean relative to the mode is dependant on the power of the
optical input. This is due to the unipolar nature of the pulses which make the f distribution
asymmetric with a long tail on one side. A simplified version of the central MCA is incorporated
into each channel to track the mode of the f distribution and adjust the baseline accordingly
(see section 6.2). This technique was not implemented to correct the baseline on short time
scales but to correct for changes in output power seen when collecting experimental data. For
example, when performing tomographic set of measurements the power to the sensor can vary
widely with measurement setting. I discuss baseline correction further in section 4.1.

25

Chapter 3

Preliminary testing and analysis

3.1 Test apparatus

Figure 3.1: The cryostat and control electronics rack: The ADR stage and TESs are housed in
the silver box labeled HPD. The rack of control electronics is in the foreground and the FPGA
development board and ADC card used to implement the processor are installed in a case low
in the rack. The silver pipe exiting the top of the HPD box carries fibres connected to TESs to
the light tight fibre junction box out of frame on the left. In the junction box fibres from the
TESs can be sliced to fibres connected to experiments.

We use an ADR to get our TESs down to operating temperature. An ADR is a final

26

low temperature cooling stage usually housed in a continuous closed cycle refrigerator. Our
continuous cycle refrigerator is a pulse tube refrigerator (PTR) [dW00] with a cold plate at
∼ 3K and the ADR stage cools from 3K down to the TES operating temperature. ADRs utilise
the magnetocaloric effect by controlling the entropy of the magnetic moments of a paramagnetic
salt housed in pill. Energy in the magnetic degrees of freedom of the pill is dependant on the
angle of the magnetic moments relative to the direction of an external magnetic field and that
fields strength. The minimum energy configuration occurs when all the magnetic moments are
aligned with the field. The pill is suspended inside the PTR below a superconducting magnet
which provides the field and the pill can be either thermally isolated or connected to the 3K

plate by opening or closing a mechanical heatswitch.

In order to cool the TESs, which are attached to the pill, down to operating temperature
the ADR must first be magnetically cycled. During the magnetisation phase of the cycle the
field is slowly increased over a period of ∼ 15 minutes with the heatswitch closed1. As the field
increases the entropy of the pill decreases as the moments align with the field. Energy stored in
the misalignment of the moments moves into vibrational degrees of freedom of the salt molecules
increasing the pills temperature. Entropy moves from magnetic degrees of freedom to thermal
degrees of freedom. By the time the magnet reaches full field the pill temperature is a few
degrees above the 3K plate. The pill is then soaked at full field for at least an hour, during the
soak phase heat flows from the pill through the heatswitch to the cold plate and the pill cools
towards 3K. The heatswitch is then opened isolating the pill and the field is decreased over a
period of about 20 minutes in the adiabatic demagnetisation phase of the cycle. As the field
decreases the magnetic moments are knocked out of alignment by thermal motion absorbing
the thermal energy and cooling the pill. Entropy moves from the thermal degrees of freedom
to the magnetic degrees of freedom. The temperature of the pill and attached TES can be
controlled by adjusting the current in the magnet which alters the field strength. When the pill
temperature reaches the desired operating temperature control of the power supply providing
the magnet current is handed over to a proportional-integral-differential (PID) controller to
regulate the temperature.

While the PTR has a cooling power capable of maintaining a temperature indefinitely under
a thermal load of less power, the ADR stage has a cooling energy and can only maintain a
temperature under any load for a finite hold time. With a roughly 90 minute cycle our system
has approximately 8 hours of hold time at 100mK. Although I have fully automated the
cryostat by adding a motor to operate the heatswitch and developing software so the cryostat

1 If the current in the superconducting magnet is changed too rapidly the protection circuit will activate due
to the back EMF. When the voltage across the magnet leads exceeds ∼ 0.7V the circuit shorts the magnet.
This protects personnel and external equipment if there a loss of cooling power or another event that causes the
magnet to stop superconducting while significant field current is flowing. Without the circuit the energy stored
in the magnetic field would exit the cryostat via the magnet power leads in a high current and voltage pulse in
a process called a magnet quench.

27

can be monitored and controlled remotely from the same script controlling an experiment, the
cryostat adds an extra layer of complication to experiments involving TESs.

Figure 3.2: Test source: The source of weak optical pulses used for testing is a nominally 820 nm

laser diode driven by a 50 ns 2.6V electrical pulse at 10 kHz from a pulse generator. The diode
and associated optics are housed in a light tight box and fibres run from the box to TES in a
light tight conduit. Unused fibres connected to TESs are in the plastic bags seen at the back
of the box. The diode output (middle right) passes though a 2 nm wide spectral filter centered
at 820 nm (not shown). After the filter the beam is steered by two mirrors (front) through two
linear polarisers, which provide variable attenuation to adjust the average photon number in a
pulse, to the fibre coupler leading to the TES (middle left just in front of the plastic bags).

The optical input used to analyse the processors performance is provided by an ∼820 nm

laser diode driven by a 50 ns wide 2.6 volt electrical pulse at 10 kHz. The laser output is filtered
by a 2 nm wide spectral filter centered at 820 nm. The diode and associated fibre coupling
optics are housed in a light tight box (Figure 3.2) and fibres to the TES run through a light
tight conduit. Fine control of the pulse intensity is achieved with a pair of linear polarisers.

3.2 Preliminary performance analysis

3.2.1 Data acquisition

The TES system output from the ×100 preamp (Figure 1.2) is AC coupled to Lecroy model
1855A amplifier for further amplification before being passed to the ADCs attached to the
FPGA. Data was captured during same hold cycle of the ADR with four levels of optical
attenuation2 (see Table 3.1). A second processor channel measures the electrical pulse driving

2 The names indicate the dominant photon peak on the live MCA display as I adjusted the attenuation.

28

Dataset Events captured Model distributions Acquisition time (s)

peak4 17834243 15 1800
peak3 17744605 14 1800
peak2 16960239 11 1800
peak1 14894211 8 1800

Table 3.1: Data capture details. The captures are of pulse event packets. Shorter (1 minute)
captures of single_trace, event packets which include a record of f, were also taken to create
figures containing traces. The model distributions column indicates the maximum photon
number assignment in the measurement model for that dataset.

the laser to be used as a herald of possible detections.
The processors central MCA can capture a wider set of measurements than can be returned

in event packets. In particular it is not constrained to measurements of valid rises or pulses as
determined by the pulse_threshshold and slope_threshold registers, see Figure 2.1. The
extrema sequences are the extreme value of a sequence since its previous zero crossing. The
fextrema and sextrema sequences are used to find appropriate settings for the pulse_threshold

and slope_threshold registers. See Figure 3.3 and Figure 3.4. The thresholds were set so
that some noise is captured in the datasets.

−2000 0 2000 4000 6000 8000 10000 12000

extreme value of the filtered signal (f)

0

5000

10000

15000

20000

25000

30000

co
u

n
t

2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

18

20

Figure 3.3: Distribution of fextrema signal. f is the extreme value of f since its previous zero
crossing but the figure only shows the distribution of the maximum. The inset shows a zoomed
in view with the distribution of the noise on the left and the single photon distribution on
the right. The vertical line indicates the pulse_threshold is set into the tail of the noise
distribution.

29

−1000 0 1000 2000 3000 4000

extreme value of the slope signal (s)

0

50000

100000

150000

200000

250000

300000

co
u

n
t

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

30

60

90

120

150

180

210

240

270

300

Figure 3.4: Distribution of sextrema signal. s is the extreme value of s since its previous zero
crossing but the figure only shows the distribution of the maximum. The inset shows a zoomed
in view with noise on the left. The peak on the right is distribution of the maximum value
of s during detection of a single photon. The vertical line shows slope_threshold is set just
into the noise distribution. I believe the fine structure in the distribution is because the s

sequence is rounded to a 16.8 bit (16 bit wide with 8 fractional bits) value at the output of the
differentiator. Many of the fractional bits are not significant and there is a periodic variation
in the probability that the filter stages generate values over the 16 bit range. The distribution
becomes smooth when MCA bin_n register is used to increase the histogram bin width.

3.2.2 Dark noise

In its current location in the lab our TES are often plagued by electromagnetic interference. I’ve
done what I can to trouble shoot the problem and improve earthing without success. To collect
the data I limit the signal bandwidth to 1MHz using the analogue input filters in the Lecroy
amplifier’s input stage, this removes most of the interference. Unfortunately the restricted
input bandwidth also limits the utility of the s sequence in discriminating between noise and
true photon detections.

Figure 3.5 displays traces captured over 30 minutes with the laser diode off and includes
events with higher energy than seen even with the laser is on. I speculate that these are cosmic
ray related as generally they rise and cool a slower rate than a photon absorption which may
indicate energy absorbed near the sensor heating it more slowly. Most of the events detected
with the laser off are a combination of TES noise and photons from the high energy tail of the
blackbody spectrum. A few photons from the lab still manage to couple into the fibre leading
to the sensor, the rate is very low, ∼ 1 event every 10 minutes3.

3 We have a more sensitive TES that has not been fully analysed, it has higher intrinsic gain and gives better

30

−2500 timestamp 2500 5000 7500 10000 12500

time (ns)

−5000

0

5000

10000

15000

20000

25000

30000

fil
te

re
d

sig
na

l(
f)

−2.5 timestamp 2.5 5.0 7.5 10.0 12.5 15.0

time µs

0

5000

10000

15000

20000

f
se

qu
en

ce

|1〉
|5〉
|14〉

Figure 3.5: Dark traces captured over 30 minutes with 30MHz (top) and 1megahertz (bot-
tom) bandwidth at the input of the Lecroy amplifier. The dash-dot blue line indicates the
pulse_threshold setting. The thick dotted lines indicate the average pulse shape found by
first assigning a photon number to traces using techniques described in subsection 3.2.3 then
averaging over all traces assigned the same photon number. The majority of the 141 dark events
captured during the 30 minutes are due to a combination of blackbody photons and intrinsic
TES noise.

3.2.3 Statistical modeling

This analysis focuses on the pulse area measurement as it has the highest dynamic range. The
techniques can also be applied to the other measurements such as rise height, maximum slope

discrimination between the blackbody and 820 nm photons.

31

etc.
If a magic box that emitted a known photon number (Fock) state at the press of a button

existed, I could use it to characterise the the performance of the TES and processor. Re-
peatably pressing the button that emits a single photon would enable the distribution of area
measurements for single photon detections to be determined. Pressing the two photon button
allows the two photon measurement distribution to be estimated etc. The parameters of each
distribution are dependent on the energy of the measured Fock state, the sensors energy res-
olution at that energy, the intrinsic TES noise and noise added by electronics and the area

measurement process. In the absence of magic the best I can do is input an unknown Fock
state superposition.

The Expectation Maximisation (EM) [DLR77] algorithm computes a Maximum Likelihood
(ML) estimate in the presence of hidden data. I use it to fit a a mixture model made up of
multiple component distributions to the measurement data. In this case the hidden data is
the weight of each component in the mixture which originates from the unknown Fock state
superposition generated by the pulsed laser diode (Figure 3.2).

0.00 0.43 0.98 1.56 2.13 2.67 3.19 3.69 4.17 4.64 5.09 5.53 5.96 6.36 6.77

area measurement (×106)

0.0

0.5

1.0

1.5

2.0

co
u

n
t

(×
1
05

)

1 photon distribution

2 photon distribution

3 photon distribution

4 photon distribution

5 photon distribution

6 photon distribution

7 photon distribution

8 photon distribution

9 photon distribution

10 photon distribution

11 photon distribution

12 photon distribution

13 photon distribution

14 photon distribution

model

data bin

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3.6: The area measurement model created from the peak3 dataset. The distribution
of measurement values is modeled as a mixture of gamma distributions which are fitted using
the expectation maximisation algorithm, see text for details. The algorithm finds the maxi-
mum likelihood estimates of each distribution’s parameters and its weight in the mixture by
systematically adjusting thresholds (dashed vertical lines) that partition the population of mea-
surement values into sub-populations belonging to individual distributions. Only measurement
values less than solid vertical line are fit to distributions but the total number of values is used
in the calculation of the weights.

32

I implement the simplest form of the algorithm:

• The maximisation step takes a set of thresholds that partition the measurement values
into sub-populations. Each sub-population is assumed to be sampled from one distri-
bution in the mixture. ML estimates of the parameters for each distribution are then
calculated from each sub-population and the proportion of the total measurement values
each sub-population represents serves as an estimate of the hidden data.

• The expectation step uses the distribution parameters and hidden data estimated at
the previous maximisation step to update the thresholds. New thresholds are set by
finding the intersection of the probability density functions (PDFs) for each neighbouring
distribution.

Maximisation and expectation are iterated over until the likelihood of the mixture model
converges. When the individual distributions in the data are well defined and reasonable
initial thresholds are supplied this simplified EM procedure performs well. A set of initial
thresholds used to seed the EM algorithm is found by first constructing a histogram from the
measurement value population, convolving it with a smoothing filter and then finding the peaks
of the smoothed histogram. Initial thresholds are set at the midpoint between the discovered
peaks with two additional thresholds added to bound the range of of measurement values used
by the algorithm. An initial threshold at 0 set the lowest value used and one symmetrically
placed after the last discovered peak sets the highest value used. These bounding thresholds
remain fixed during the expectation maximisation process.

To compare models I use the Akaike information criterion (AIC) [Aka98],

AIC = 2k − 2 ln(L̂),

where k is the number of degrees of freedom of the model and L̂ is the maximum of the likelihood
function. The AIC is an asymptotically valid estimate of the information lost by a model of
some unknown distribution. When two models are compared the one with the lower AIC is
preferred. The relative likelihood is,

exp

(
AIC1 − AIC2

2

)
,

where AIC1 is the lower AIC of the two models. The relative likelihood estimates the probability
that the model with AIC2 minimises the information loss rather than the model with AIC1.

Comparing measurement models composed of Gaussian, skewed Gaussian and gamma dis-
tributions the relative likelihood establishes that a mixture of gamma distributions is the most
likely of the three model types to minimise information loss. The area measurement model
constructed from the peak3 dataset is shown in Figure 3.6.

Counting thresholds are found using a measurement model consisting of M distributions
by normalising them and calculating the intersection of the neighbouring PDFs. These M − 1

33

thresholds are labeled tn where n ∈ [1,M − 1] and are used to assign photon number n to
measurement value a. When a ≤ tM−1 it is assigned photon number n where tn−1 < a ≤ tn

and t0 ≡ 0. When a > tM−1 it is assigned the photon M+ indicating a detection of at least M

photons, see Figure 3.7.

Probabilities for assigning the photon numbers to a measurement value can be found from
the overlap of the distributions in a measurement model, see Figure 3.8. By using the values of
the cumulative density functions (CDFs) of the distributions at the modeled counting thresholds
an operator that takes an input Fock state superposition to a superposition of photon number
assignments (measurement outcomes) can be created. Let pfn be the probability of assigning
photon number n to a measurement of Fock state f , then

pfn =

cdff (tn)− cdfn(tn−1) f ≤ M,n < M

1− cdff (tM−1) f < M, n = M

pfx =

1 f > M, x = M

0 f > M, x 6= M
(3.1)

0.00 0.43 0.98 1.56 2.13 2.67 3.19 3.69 4.17 4.64 5.09 5.53 5.96 6.36 6.77

area measurement (×106)

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y
(×

10
−

5
)

1:1085289

2:2310000

3:3276845

4:3486676

5:2970672

6:2108626

7:1281574

8:682445

9:322995

10:137997

11:53334

12:19073

13:6227

14+:2852

total:17744605

1 2 3 4 5 6 7 8 9 10 11 12 13 14+

Figure 3.7: Counting thresholds are found by normalising each of the M distributions in the
measurement model and calculating the intersection of the neighbouring PDFs. Photon number
M+ is assigned to all measurements greater than the (M − 1)th threshold indicating detection
of at least M photons, see text for details. The the figure shows the model constructed from
the peak3 dataset and the numbers in the legend count the measurements assigned to each
photon number.

34

5955144 6361799
area measurement

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6
pr

ob
ab

ili
ty

(×
10

−
7
)

p1212 = 0.98635

p1312 = 0.00690

p1213 = 0.00849

p1313 = 0.98060

p1413 = 0.01136

p1314 = 0.01249

Figure 3.8: By using the values of CDFs of the distributions at the thresholds a the probabilities
of assigning the wrong photon number to a measurement can be estimated. These probabilities
can be used to estimate the the superposition of assigned photon numbers that arises from
measuring a given Fock state superposition. The probability pfn is the probability of assigning
photon number n to a measurement of Fock state f .

and we have

M∑
i=1

pfi = 1 (3.2)

These number assignment probabilities can be used to construct an operator similar4 to a
positive-operator valued measure (POVM), an operator used to describe generalised quantum
measurement, which maps the state measured to measurement outcomes, see Figure 3.8.

As an operational test I reconstructed the laser’s output state from the number resolved
counts and the heralding information provided by the laser drive pulse. Vacuum counts are
found by counting the number of heralds that are not correlated with a detection, see Figure 3.9
and Table 3.2. The laser output (Figure 3.2) is modeled as a two parameter Gaussian state

ρα,n̄ = D(α)ρn̄D(α)†, (3.3)

where D(α) is the displacement operator and ρn̄ = (1 − e−n̄)
∑
n

e−n̄n|n〉〈n| is a thermal state

with average photon number n̄. When n̄ = 0 ρα,n̄ is a coherent state. To create the the laser
4There are no probabilities related to the vacuum outcome which may disqualify it as a true POVM

35

100 200 300 400 500 600 700

pulse_threshold timing - detection time relative to herald (ns)

0

200000

400000

600000

800000

1000000

1200000

1400000

co
un

t

1 photon
2 photons
3 photons
4 photons
5 photons
6 photons
7 photons
8 photons
9 photons
10 photons
11 photons
12 photons
13 photons
14+ photons
Total

Figure 3.9: The datasets are captured with the timing register set to pulse_threshold. The
histogram records the relative delay between a detection and a heralding signal derived from
the electrical pulse that energises the laser diode. The probability of a vacuum detection is
estimated as the number of heralding events not coincident with a detection divided by the
number of heralding events in the dataset. A coincidence occurs when there is a detection
between 100 ns and 700 ns after the herald.

Correlated detections Uncorrelated events

total 1-photon heralds 1-photon multi-photon

peak4 17833759 775469 166387 473 11
paek3 17744142 1085289 256007 458 5
peak2 16959820 2967401 1040327 416 3
peak1 14893808 5448324 3106340 399 4

Table 3.2: Temporal correlation between the heralding signal derived from the pulse driving
the laser and TES detections. The photon number dependent jitter is shown in Figure 3.9.
When the delay between the herald and detection is between 100 ns and 700 ns the herald and
the detection are considered correlated and coincident. Uncorrelated heralds are considered
vacuum detections.

output state estimates in Figure 3.10, I use the measurement model created from the peak3
datasets to analyse all four datasets to test how a single calibration performs with different
optical inputs to the TES. I use a parametrised model of ρα,n̄ created with QuTiP[JNN13] to
calculate the Fock state superposition probabilities, then apply the number assignment error

36

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉 |10〉 |11〉 |12+〉
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
co

u
n
t

(×
10

6
)

Data

Displaced thermal

Coherent

α = 2.1657± 0.0002

α = 2.1656± 0.0001

n̄ = 0.0005± 0.0002

χ2/11 = 2.1866

χ2/10 = 1.4020

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉 |10〉 |11〉 |12+〉
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
u

n
t

(×
10

6
)

Data

Displaced thermal

Coherent

α = 2.0634± 0.0001

α = 2.0633± 0.0001

n̄ = 0.0004± 0.0001

χ2/11 = 1.0280

χ2/10 = 0.5694

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉 |10〉 |11〉 |12+〉
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

co
u

n
t

(×
10

6
)

Data

Displaced thermal

Coherent

α = 1.6885± 0.0001

α = 1.6884± 0.0001

n̄ = 0.0004± 0.0001

χ2/11 = 1.2756

χ2/10 = 0.8719

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉 |10〉 |11〉 |12+〉
0.0

1.0

2.0

3.0

4.0

5.0

co
u

n
t

(×
10

6
)

Data

Displaced thermal

Coherent

α = 1.3261± 0.0001

α = 1.3259± 0.0001

n̄ = 0.0004± 0.0002

χ2/11 = 1.7244

χ2/10 = 1.1917

Fock state

Fock state

Fock state

Fock state

Figure 3.10: Least squares fitting of the datasets to model the optical input states. The datasets
are peak4, peak3, peak2 and peak1 from left to right and top to bottom. Number assignment
probabilities (Equation 3.1) and counting thresholds (Figure 3.7) from the measurement model
created from the peak3 dataset are used to analyse all datasets. The number assignment prob-
abilities are applied to the Fock state superposition produced by a parametrised model of a
displaced thermal state (ρα,n̄ = D(α)ρn̄D(α)†) to estimate the measurement outcome probabil-
ities. Measurement outcomes are contracted from 1-14+ to 1-12+ to minimise truncation effects
due to the finite measurement model. The α and n̄ parameters are estimated by non-linear
least squares minimisation of the residuals between the modeled and observed measurement out-
comes. The vacuum detection probability is estimated from the number of laser drive pulses not
coincident with a detection, see Figure 3.9 and Table 3.2. Standard errors are calculated from
an estimate of the covariance matrix created by the least squares minimisation. The coherent
state model has a fixed n̄ = 0.

probabilities (POVM) in Equation 3.1 and contract the result from number outcomes 1-14+ to
1-12+ in order minimise truncation effects. To estimate the parameters of ρα,n̄ I perform a non-
linear least squares minimisation5 of the residuals between modeled and observed measurement
outcomes. Figure 3.11 assumes the laser outputs coherent states and examines the stability of
the state estimate over time. Each dataset is broken into subsets containing 100000 laser drive
pulses and the α parameter is estimated as described above for each subset. Table 3.3 and

5 Using the LMfit package which wraps the SciPy minimiser calling the MINPACK implementation of the
Levenberg–Marquardt algorithm[Lev44]

37

Table 3.4 contain estimates of mean and standard error of the laser output state parameters
from the subset populations plotted against time in Figure 3.11.

0 300 600 900 1200 1500 1800

time (s)

2.162

2.163

2.164

2.165

2.166

2.167

2.168

2.169

E
st

im
at

ed
co

h
er

en
t

st
at

e
α

average α

moving average (60 second)

10 second fit

0 300 600 900 1200 1500 1800

time (s)

2.058

2.060

2.062

2.064

2.066

2.068

E
st

im
at

ed
co

h
er

en
t

st
at

e
α

average α

moving average (60 second)

10 second fit

0 300 600 900 1200 1500 1800

time (s)

1.684

1.686

1.688

1.690

1.692

E
st

im
at

ed
co

h
er

en
t

st
at

e
α

average α

moving average (60 second)

10 second fit

0 300 600 900 1200 1500 1800

time (s)

1.322

1.324

1.326

1.328

1.330

E
st

im
at

ed
co

h
er

en
t

st
at

e
α

average α

moving average (60 second)

10 second fit

Figure 3.11: The stability of the coherent state estimate. Each data set is broken into subsets
containing 100000 laser drive pulses, representing a 10 second capture time, and the subset is
used to estimate α as described in the text. The blue line is a moving average over 6 of the 10
second estimates.

100000 heralding events (10s) running average (60s)

Coherent state α χ2/11 Coherent state α χ2/11

peak4 2.166± 0.002 1.0± 0.4 2.1657± 0.0008 1.0± 0.1

peak3 2.063± 0.002 1.0± 0.4 2.063± 0.001 1.0± 0.2

peak2 1.688± 0.002 1.0± 0.5 1.6884± 0.0007 1.0± 0.2

peak1 1.326± 0.002 1.0± 0.6 1.3257± 0.0007 1.0± 0.2

Table 3.3: Coherent state estimates based on the statistics of subsets containing 100000 drive
pulses, values are recorded as (mean)±(standard deviation) from the population of estimates
plotted against time in Figure 3.11.

38

100000 heralding events (10s)

α n̄ χ2/12

peak4 2.165± 0.002 0.001± 0.001 1.0± 0.4

peak3 2.063± 0.002 0.001± 0.001 1.0± 0.5

peak2 1.688± 0.002 0.001± 0.001 1.1± 0.5

peak1 1.326± 0.002 0.001± 0.001 1.1± 0.7

Table 3.4: Thermal state estimates from the statistics of subsets of each dataset containing
100000 laser drive pulses. Values are recorded as (mean)±(standard deviation) of the subset
population.

39

Chapter 4

Discussion and conclusions

4.1 Discussion

The accuracy of the scalar measurements the processor currently makes hinge on the accuracy of
the baseline estimate. While capturing the peak4 dataset, the baseline shifted by approximately
400 from its value when the laser was off. The estimate of α = 2.166 for the weak coherent
pulses captured in peak4 implies an average rate 46920 photons per second. Though the
dynamic correction described in subsection 2.3.1 was active (baseline.dynamic=True) the
correction mechanism operates on comparatively long time scales. Baseline error effects the
area measurement in an outcome dependent way. It adds area noise proportional to the length
of the TES detection pulse which is correlated with the measured Fock state. Two major factors
influence the quality of the laser output state estimations in Figure 3.10, Figure 3.11, Table 3.3
and Table 3.4, one is baseline error the other is errors in discriminating photon detections from
noise.

Baseline correction through monitoring the mode of the f sequence is novel but was only
intended as a first approximation to be used in the initial peak finding pipeline. A second order
estimation can be made for each detection by adding some extra delay and pipelining enabling
averaging over the f sequence over a fixed time range before the timing point of each pulse.
The current prototype would be used to establish where and for how long the average should
be acquired and what improvement in measurement uncertainty could be achieved.

Figure 3.11 displays the stability of the estimate of the laser output state over time. Each
dataset in the figure was captured over a 30 minute period in the following order peak4, peak3,
peak2 then peak1, time flows left to right top to bottom. Given that there is no temperature
stabilisation of the laser diode, the drift in intensity seen in Figure 3.11 is consistent with a
drift in the laser’s wavelength as it thermalises. Wavelength drift is converted into drift in the
average photon number per pulse by the 2 nm wide filter. In this scenario, the abrupt drop in α

in the middle of the peak3 dataset can be attributed to a mode hop. An alternative explanation
is that the drift in the estimated pulse intensity is due to drift in the baseline estimate. Though
I favour the former explanation, the true picture most likely involves a combination of the two.

40

Further investigation is required and the processor is capable of capturing pulse packets, as
was done to collect the datasets, while simultaneously capturing distributions streamed from
the MCA. These two datastreams can be correlated in time to investigate the stability of the
baseline estimate in more detail.

In general, the use of thresholds in classification is not considered best practice as they rep-
resent a hard binary choice between two classes, above and below, whereas other techniques can
offer a fuzzier probabilistic classification. Processing using hardware circuits imposes consider-
able constraints on the processing that can be performed and the use of thresholds appeared
to be the only tractable design choice. Discrimination of photon detections from noise is the
main task that needs to be examined in this light.

0 2000 4000 6000 8000 10000

MCA bin

0

10000

20000

30000

40000

50000

60000

M
C

A
bi

n
co

un
t

non-zero MCA bin
noise
single photon

2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

Figure 4.1: The distribution fextrema sequence captured for 1 minute showing the distribution of
the maximum value the filtered TES signal (f) obtains between baseline (zero) crossings. The
inset shows a zoomed in view. On the left is the noise distribution which can be modeled as a
mixture of two Weibull distributions (blue line) and on the right is the single photon distribution
which can be modeled as a single Weibull distribution (orange line). This information can be
used to estimate the probabilities of error in number assignment between the vacuum and single
photon term and in turn estimate the single photon loss and dark count (noise) probabilities
for a given pulse_threshold setting. These probabilities can then be used to complete the
POVM, see Equation 3.1. A realtime display could be created that estimates the overlap of
the noise distribution and the single photon distribution as an aid in tuning the TES biasing,
see Figure 1.2.

In the analysis presented in subsection 3.2.3, the discrimination between signal and noise
is achieved using two different thresholds each on different but correlated sequences. A rise

41

is the detection signal is classified as a photon detection when the filtered TES signal (the f

sequence) exceeds the pulse_threshold setting and the maximum value of the slope of f (the s

sequence) exceeds the slope_threshold setting during the rise. These threshold settings trade
off between efficiency, or loss of a photon detection, and counting noise as photon detection,
or dark counts. The settings used to capture the datasets analysed in subsection 3.2.3 favour
efficiency and are set into the noise distributions, see Figure 3.3 and Figure 3.4. Table 3.2
contains correlated and uncorrelated counts for the datasets and shows that the dark count
rate is roughly 800-900 per hour. Generally dark counts will be assigned a photon number of 1
and loss will be generally of detections that would have been assigned photon number 1. The
measurement outcome dependence of these errors degrades the quality of the laser output state
estimations. Estimation of the loss of single photon detections is not addressed in my current
analysis. Direct accounting of the loss maybe possible using the techniques of correlated photon
metrology[Mig08] or with a calibrated attenuator[LGPM15]. The MCA provides an alternative
method for estimating the dark count and single photon loss probabilities that I have not
analysed in detail.

Figure 4.1 shows the distribution of the fextrema sequence which is the maximum value the
filtered TES signal reaches between baseline crossings. The distribution of the TES noise can
be modeled as a mixture of two Weibull distributions and the single photon response as another
Weibull distribution. The overlap of the noise and single photon distribution can be used to
estimate the single photon loss and dark count probabilities in a similar way to Figure 3.8 and
be used to add the missing POVM elements in Equation 3.1. The overlap of the noise and
single photon distributions depends on the gain of the particular sensor which is subject to
fabrication variability and the TES biasing. A realtime display can be constructed using the
MCA that would allow the biasing to be adjusted to minimise this overlap. The probabilities
of single photon loss and single photon noise are dependent on the threshold settings, which
can be used to tune the trade off between dark counts and detection loss.

Another processor feature that can aid in discrimination of signal from noise but has not
been analysed, is the dot product measurement returned by the dot_product event packet.
The dot product module in each channel operates on the same sequence record that would be
returned as a trace as specified by the trace_length, trace_stride and trace_pre register
settings, see Figure 2.1 and section 2.3. The vector dot product operation is performed on
the sequence record and a stored template with the same sequence length then recorded in
the dot_product field of the event packet. It was shown in [LGM+12] that the dot product
provides respectable energy discrimination. I expect it also improves discrimination of signal
from noise as it incorporates some pulse shape characteristics. By using the average single
photon response as a template my expectation, based on these preliminary results, is that
a combination of dot_product measurement, the pulse_threshold and slope_threshold

settings and perhaps the rise_time measurement will significantly improve discrimination of
signal from noise.

42

−2500 timestamp 2500 5000 7500 10000 12500 15000

time µs

baseline

pulse_threshold

f
se

qu
en

ce

Figure 4.2: Uncorrelated traces captured over 1 minute with cfd_low timing. The peaks that
are delayed in the traces are due to a noise event triggering the trace capture which was followed
by a photon photon event during the time the trace was captured. When capturing only point
measurements in a pulse event packet two event are seen as separate if the signal falls below
pulse_threshold between them. In this case, two pulse event packets with be returned. For
the brown photon event that occurs closest to the timestamp the signal does not fall below the
pulse_threshold after the noise event triggers the sequence recording. In this case the pulse

packet will contain two rise records, see Figure 2.1. Multi-rise information has not been used
in the analysis presented in this thesis.

It should be noted that the testing and analysis in chapter 3 is performed under non optimal
conditions, perhaps even approaching worst case. I choose the sensor that displayed the worst
intrinsic gain (due to fabrication variation) to analyse. I biased the sensor “by eye” using an
oscilloscope and the live MCA display of the distribution of fextrema signal (without any curve
fitting in Figure 4.1) so it is unlikely to be optimally biased. The bandwidth is limited to 1MHz

at the input of the Lecroy amplifier effecting the utility of slope in discriminating signal from
noise. The analysis does not use the heralding signal to post select any noise events only to
estimate the vacuum count.

4.2 Conclusions

This thesis describes the design development and testing of a hardware circuit library for use
with the remarkable Transition Edge Sensor. The library is written in VHDL and a prototype
signal processor based on its components is implemented in a Field Programmable Gate Array

43

for testing. The prototype makes “point” measurements of a TES pulse such as its area, height
and length. The goal of the hardware approach is to provide realtime, time and number resolved
coincidence counting across multiple channels at the highest rates the sensors can deliver.
Existing techniques capture the entire sequence record of a detection pulse and process it in
software. Software based approaches allow arbitrarily complex processing which delivers low
energy uncertainty but can have potential scalability issues, difficultly delivering information
in realtime and trouble capturing long high detection rate records without dropping detection
events.

Though testing is preliminary and the analysis is rudimentary the initial results are very
encouraging. My optimism is based on the quality of estimates of the laser output state
in Figure 3.10, Figure 3.11, Table 3.3. The quality of the estimate is reasonable across the
timescales examined. Photon number assignment for all the datsets is based solely on the
measurement model derived from the peak3 dataset indicating the characterisation is reasonably
stable across different pulse intensities. Least squares and the χ square statistic are not really
the most appropriate indicators and more rigorous likelihood based analysis is warranted, this
will follow in a peer reviewed publication. Based on the estimate of the likelihood from the
least squares minimisation use of the POVM elements (Figure 3.8) does not significantly change
the parameter estimates but does improve the likelihood of the fit and therefore the reduced χ

square. This indicates the estimated POVM elements are reasonable. I believe the increase in
variance of the reduced χ square with decreasing α seen in Table 3.3 is due to baseline error.
In the peak4 dataset most of the electrical pulses that drive the laser result in a detection
whereas far less drive pulses produce a detection for the peak1 dataset, see Table 3.2. Under
the conditions of the peak1 dataset there are more occasions where the TES cools for 2 or 3
drive pulse periods and this may increase baseline errors as the baseline estimate is based on
averaging over longer time scales. Section 4.1 has details of how a second order, per detection
baseline estimation can be implemented which would reduce energy uncertainty at low average
photon numbers.

The displaced thermal state model for the laser output was introduced during early testing
of the prototype. The first data I captured with the processor was produced by a ∼ 830 nm

laser diode driven by a 5.6V 2 ns electrical pulse at 100 khz and under those conditions the
displaced thermal model was the best estimate of the laser output state. For the data analysed
in this thesis using a ∼ 820 nm diode driven at 100 khz by a 2.6V 50 ns pulse the thermal
character has effectively disappeared and laser output is best modeled using a coherent state.
The AIC for both models based on the likelihood estimate from the least squares minimisation
does not significantly favour one model over the other. The estimates of n̄ the average number
of photons in the thermal state before displacement are consistent with n̄ = 0, see Table 3.4.
Further work is required to establish if the thermal nature seen in earlier data is optical or due to
measurement error related to baseline estimation. The output estimates should be investigated
under different drive repetition rates, pulse widths and voltages. Optical responses of laser

44

diodes under these drive conditions are not well described in the literature.
Parts of my analysis are still qualitative but I expect that the the processor has low enough

number uncertainty, as is, for number resolved coincidence counting for the quantum informa-
tion experiments we have planned with 820 nm photons. There is a clear program of devel-
opment that will reduce the current energy uncertainty and should make the processor more
useful at longer wavelengths where the energy per photon is lower. I don’t have any of the
standard software techniques implemented in our lab and time pressure prevented me visiting
NIST Boulder to see them in action so quantitative comparison of the software and hardware
processing approaches is difficult. Ideally a head to head comparison of the two approaches
operating on the output from the same sensor should be performed. Many processor features
described in Part II are yet to be tested or examined in detail.

The realtime capabilities of hardware processing aid in the setup and optimisation of exper-
iments. My MCA design is capable of operating continuously and without loss at the 250MHz

ADC sampling frequency and opens a novel view on TES signals via capturing the probabil-
ity distributions of various signal statistics. Use of the MCA may also lead to improved TES
biasing procedures (Figure 4.1) and, if the biasing voltages were computer controllable, would
enable full automation of TES tuning.

Not described in this thesis is the capture server software that runs on a host computer.
Though designed by myself, in parallel with the circuit library, the server software was devel-
oped and implemented by fellow PhD student Alexandrina Nickolova. The server captures the
packet stream produced by the processor and produces daughter streams for realtime display.
This includes the counting of number coincidence patterns. The server software is capable of
capturing a full record of the eventstream produced by the processor as a number of indexed
files allowing easy access to the data. Data analysed in subsection 3.2.3 was captured in this
way. The server streams and the processors registers can be accessed from any network device
capable of running Python which allows full automation of data acquisition and control the
experimental circuit using python scripts or Jupyter notebooks. I’ll leave detailed explanation
of the capture server software to Alexandrina’s thesis.

There are a number of bugs that need to be addressed, a clear program of improvements to
be made, and more rigorous testing and analysis are required but all this is typical of a prototype
at this stage of development. Though the design, hardware development, circuit verification,
testing and software development for the circuit library was a long and often painful process, I
am uncharacteristically pleased with the result.

45

Part II

Implementation Details

46

Chapter 5

Stream processing

0 10 20 30 40 50

Time µs

Vo
lta

ge
(a

rb
ita

ry
un

its
)

Figure 5.1: TES output after room temperature amplification. The optical input is from a
∼830 nm laser diode driven with a 100 kHz electrical pulse which produces optical pulses with
average photon number 〈n〉 ∼ 3.

Each processor channel converts the stream of detection pulses output by a TES depicted
in Figure 5.1 into a stream of event packets called the eventstream (section 5.2). Event packets
contain pulse measurements, made in the channels measurement pipeline (chapter 6), and a
timestamp. Processor registers (appendix Appendix A) control how the measurements are made
and which measurements appear in the event packet. Each channels eventstream is merged into
a single timestamped eventstream (section 5.3) which is packaged for transport to the host.

See Figure 5.2 for a schematic overview of the prototype. The schematic is hyperlinked,
each pipeline element links to a description of what it does and the description links to registers
that control it.

47

packet
engine

Measure

Digital
filters

Baseline
correction

Delay

Input
select

ADC 0

channel
registers

CPU

value
select

channel0

packet
engine

Measure

Digital
filters

Baseline
correction

Delay

Input
select

ADC 1

channel
registers

CPU
value
select

channel1

global
registers

Main
CPU

eventstream MUX
channel
select

MCA Transport
framer

Ethernet
Media Access Controller

UART

eventstream

eventstream

event
stream

Ethernet frames to host
Serial register
IO with host

MCA
stream

14 bit path

16.3 bit path

MCA values
measurements
serial
register IO
parallel
register IO

Figure 5.2: Hardware prototype: The amplified analogue TES signal is digitised by 14 bit

250MHz ADCs then processed by channel pipelines which condition the signal, extract detec-
tions and make measurements to be included in an event packet. The stream of event packets,
called the eventstream, produced by each channel are merged by the eventstream multiplexer
(MUX) which adds timing information. The merged event stream is then transported to the
host computer as Ethernet frames over a dedicated point to point connection. The proces-
sor contains a collection of internal registers controlling how measurements are made, what
appears in packets and other processor functions. Register IO with the host is mediated by
embedded 8 bit central processing units (CPUs) which handle serialisation/de-serialisation, ad-
dress decoding and serial protocols required to communicate with external chips. For clarity,
two channels are shown though eight are possible with the current eventstream MUX design.
The MCA captures the distribution of a selected measurement as a histogram. Note this figure
is hyperlinked, each subsystem links to a more detailed description.

48

5.1 Notation and terminology

Streams, packets and frames
A packet is an ordered collection of fields carrying data and there are a number of packet

types. A frame is a similar structure used to transport packets to the host containing a header,
with fields dictated by the particular transport protocol, and a payload. Each transport protocol
defines a maximum frame length called the maximum transmission unit (MTU). Frame payloads
in this design fall into two classes; an array of short event packets of the same type and size;
or a packet fragment if the packet is larger than the MTU. Packets carrying a trace, which is a
fixed length record of a sequence, or a histogram from the MCA are the only types large enough
to fragment.

A stream is a sequential flow of information between a source and a sink managed by
a protocol. All streams in the design comply with the advanced extensible interface (AXI)
stream protocol which is part of the widely used advanced micro-controller bus architecture
(AMBA) open-standard. An AXI stream uses three signals to control the transfer between
source and sink1.

The ready handshake is asserted by the sink when it can accept data.
The valid handshake is asserted by the source when it has data to transfer.
The last signal is used by the source to indicate the last transfer in a packet.

Transfer occurs when both handshakes are asserted and amount of data in each transfer is
called the width of the stream, all streams in this design are 64 bits wide.

Packets and frames are assembled by a framer, an entity I created that has random access
for writing and exposes an stream interface for reading, a cross between RAM and a first in
first out (FIFO) queue. The framer solves a problem that occurs when information arrives in
a different order to the ideal transmission order, for example, transport frames usually have a
field containing the frames length but the length is usually not known until the entire frame is
processed. The framer easily allows the length to be in a header field at the beginning of the
frame so the host can allocate a buffer to hold the payload. Framers are critical in creating
event packets because the field information does not arrive in the order required to optimise
memory alignment. The framer in a packet engine generates the eventstream for each processor
channel, see section 5.2.

I have attempted to define all other terms at first use and the document contains a hyper-
linked glossary, if the term is idiosyncratic or specialised it should have an entry.

1The signals are labeled TREADY, TVALID and TLAST in the specification while the source is called
master and the sink called slave.

49

Sequences
An ADC quantises a continuous time-dependant voltage in both voltage and time to produce

a sequence of integers representing the voltage at a discrete point in time. The integers are
called samples and a sample is added to the sequence each tick of the sample clock. Sequences
are typeset ysub where sub may be omitted. Samples in a sequence are indexed by discrete time,
y[n] is the nth sample of y.

I use the term signal, where possible, to specify a 1 bit binary or Boolean sequence such as
a crossing signal. Crossings signals for sequence y are denoted y±

thresh where + (−) indicates
the rising (falling) crossing signal for the threshold thresh. I use after to refer to the clock cycle
following a crossing. I’ll abuse notation a little and use y[w±

thresh] to indicate the sample of y

captured at the crossing of thresh by w.
Crossings are strict, a rising crossing signal for sequence y is true at the first time where y

is strictly greater than the threshold since it was last strictly below the threshold, conversely
for a falling crossing. For example, the sequence {−1, 0, 0, 0, 1} has a rising zero crossing at the
value 1 but {1, 0, 0, 0, 1} has no zero crossings.

The notation y|±thresh refers to the index of previous crossing of thresh by y. At time n in
the sequence y, y|±thresh = c where c is the largest index such that c < n and y±

thresh[c] is true.
The sample at the crossing is y[y|±thresh]. The difference between y[w|±thresh] and y[w±

thresh] is that
when w±

thresh is true, ie at a crossing, y[w|±thresh] is the sample at the previous crossing while
y[w±

thresh] is the sample at this crossing. When w±
thresh is false y[w|±thresh] and y[w±

thresh] are the
same sample.

The key sequences in the design are:

raw is the raw detection sequence captured by an ADC.
f is the filtered detection sequence, raw after processing by a low-pass digital filter.
s is the slope sequence, f after processing by a digital filter configured as a differentiator.

The f and s sequences are used to identify rises and pulses. Rises are sub-sequences of f that
start at a rising zero crossing of s and end at falling zero crossing of s. I use terms like after
the rise or after the end of the rise to refer to the clock cycle after the falling zero crossing
of s. The zero crossings can be considered to be at the local minima and maxima of f. It
should be noted that these local minima and maxima are not necessarily at the locally extreme
values of f as the zero crossings and the differentiator are not exact. A first rise is a rise that
starts below pulse_threshold. A rise is a detection when at the end of the rise f is above
the pulse_threshold setting and during the rise s crossed the slope_threshold. Detections
generate an event packet. A pulse is a sub-sequence of f that starts at the start of a valid first
rise and ends at the next falling crossing of pulse_threshold by f. Pulses may contain more
that one valid rise and when they do are called a piled-up pulse.

50

Fixed point binary numbers
I use the notation w.f bit to indicate a fixed point precision, w is the width or total number

of bits in the fixed point number and f is the number of bits in the fractional part. Numbering
bits starting with 0 for the least significant bit, bit[f] = 20, bit[f − 1] = 2−1 and bit[f +1] = 21

etc.

other
All usages of time refer to discrete time measured by the sample clock, time fields and

registers are integers counting clock pulses. Host refers to the computer communicating with
the FPGA.

5.2 The streams
Thursday, 21 September 2017 11:02 AM

 New Section 1 Page 1

Figure 5.3: Stream pathways from source to the transport controller communicating with the
host, see text for details.

51

Each channel processes the digitised TES output, the sequence rawin, in a measurement
pipeline; first performing a baseline correction, centering the sequences noise band on zero;
then applying a two stage FIR digital filter. The first stage is configured as a low-pass filter to
smooth raw and produces the filtered detection sequence f, while the second stage differentiates
f to produce the slope sequence s. The measurement subsystem uses raw, f and s to generate
measurement sequences which a packet engine (section 5.4) uses to produce the eventstream.
See chapter 6 for detailed description of the measurement pipeline.

The eventstreams generated by the packet engines in each channel are merged by the
eventstream MUX (section 5.3). The MUX timestamps each packet with the relative time
since the previous event and the timestamp saturates at 16 bits. The MUX also periodically
inserts tick packets (subsection B.3.1) that contain the full 64 bit system time and proces-
sor status information, a tick is considered and event in the relative timestamp calculation
so selecting an appropriate period using the tick_period register acquires a continuous time
resolved detection record.

5.2.1 Stream transport

The merged eventstream then passes through the event buffer to the transport framer which
prepares packets for transport to the host via the transport controller for the communication
channel. Back pressure from saturation of the communication channel travels up the event
stream though the AXI ready signals (Drawing 5.3). When the communication channel satu-
rates the transport controller signals it is not ready to the transport framer and frames begin
to accumulate in its frame memory, when the frame memory is full the framer signals it is not
ready. Similarly, not ready propagates upstream to the packet engines in each channel, but
when their memory fills they begin dumping events. Each tick packet contains a count of total
packets lost and flags indicating which channels dumped packets since the previous tick.

Event packets fall into two classes (section 5.4); multiple short packets can fit into a single
transport frame in the form of an array; while trace packets that contain a sequence record
may extend over multiple frames each containing a fragment. The transport framer guarantees
the payload of short packet frames are array addressable by the host by ensuring that each
frame contains complete packets of identical type and size. If two channels request different
event packet types then no single frame will contain event packets from both channels. Trace
fragments a always transported in sequential frames. Additionally the framer always puts a
tick in a separate frame even when there are consecutive ticks with no intervening events.

Packets are designed for efficient access by ordering fields to optimise alignment in the
host’s memory. The transport framer also arbitrates between the eventstream and the MCAs-
tream carrying histograms generated by the MCA (subsection A.1.3). Arbitration favours the
eventstream as back pressure at the MCA causes the current histogram to accumulate for

52

another tick and no information is lost.

5.3 The eventstream multiplexer

Individual channel eventstreams are merged in the eventstream MUX which preserves temporal
order and inserts the relative timestamp. Preserving temporal order reduces the burden on
the host by removing buffering and reordering required in order to establish coincidence or
reconstruct a fully time-resolved detection record. Out of order event packets occur because
some packets take longer to construct than others which can occur even for packets of the same
type. Consider a three photon detection in one channel closely followed by a single photon
detection in another, the single photon event packet is available before the three photon event
packet because the TES takes less time to recover from the one photon absorption.

Temporal order is maintained using queues, a time queue common to all channels and a
1 bit commit-dump queue for each channel, see Drawing 5.3. Each packet engine directs the
process through three signals

start is asserted at the at the point the time stamp for this event should be applied.
commit is asserted when a packet is complete and committed to the packet engine framer.
dump is asserted when a packet was started but the detection pulse did not meet require-

ments and was not committed to the packet engine framer, eg when area is less than
area_threshold. dump is also asserted when the framer’s internal RAM fills while creat-
ing a packet.

At regular intervals, set by the tick_period register, the tick framer commits a tick

packet and asserts start. The tick packet contains a 64 bit timestamp and the error/status
information accumulated since the previous tick.

When the time queue receives a start signal from any of the channels or the tick framer
a 64 bit timestamp and a vector of start bits is enqueued. The the bit vector indicates which
channels simultaneously asserted start and if there is a tick at the timestamp. When a
packet engine asserts commit or dump a bit is enqueued to the commit-dump queue for the
corresponding channel with 0 representing dump and 1 commit.

The MUX processes the head of the time queue by checking whether any started channel’s
commit-dump queue is not empty which indicates the channel has completed. When a channel
has completed with commit the MUX connects the eventstream from the packet engine for the
channel to the MUX’s output eventstream until the last transfer of the packet in the packet
engine completes. The MUX then marks that channel as handled. When a channel completes
with dump it is marked as handled with no other action. When all channels are handled and
the tick bit in the started vector is set the stream from the tick framer is connected to the
MUX output until the last transfer of the tick packet completes.

53

Every type of event packet has a common structure for bytes 4 to 7 which are in the first
transfer of a packet

byte
0 1 2 3 4 5 6 7

0 eflags time

This allows the MUX to insert the relative timestamp in the time field as well as basic coin-
cidence information. The new bit in eflags field is set when time is greater than the window

setting.

5.4 The packet engine and event packets

Each packet engine contains a framer that assembles the event packets that form the eventstream
for the channel. Framer memory is 64 bits wide and consists of 4 16 bit chunks with individual
write enables. The write enables allow a field to be written in some chunks(s) without over-
writing data already in other chunks. Finite state machines (FSMs) in each packet engine fill
packet fields when the information becomes available and send the start, commit and dump

signals to the eventstream MUX (section 5.3). On commit the framers internal write port
address is advanced by the length of the packet and the committed packet is available in the
packet engine’s eventstream. When a packet is dumped the framer overwrites the old data.
The packet engines are controlled by registers in the event group and the packet and trace

registers set the type of event packet generated. Unless packet=trace the trace setting is
ignored.

5.4.1 Event flags

Each event packet has a 2 byte eflags field containing register settings used to create the
packet and additional information about the event.

first byte
bit

02347

rise_number rel2min channel

second byte
bit

01234567

trace height packet tick new

where the fields are:

rise_number: is set to 0 at the start of a pulse and incremented after the end of each rise, ie
rise_number=0 for first rises.

54

rel2min: the rel2min setting that controlled CFD behaviour,see Equation 6.1.
channel: the channel that processed the event.
timing: the timing setting that controlled the point in the rises that the timestamps refer

to, for packets carrying traces this also the trigger point, see Equation 6.4.
height: the height setting that determined how the height field was calculated, see Equa-

tion 6.5.
packet: the packet setting, ie the type of this event packet.
tick: true if this event packet is a tick. When true the values of packet and trace are

undefined.
new: true if this event marks the start of a new coincidence window (see section 5.3).

5.4.2 Short event packets

The rise event packet

The rise event packet captures individual valid rises. The piled-up pulse in Figure 6.2 would
generate two rise packets the first with rise_number=0 and the second with rise_number=1.

byte
0 1 2 3 4 5 6 7

0 height minimum eflags time

The area event packet

The area packet captures the area of a valid pulse The piled-up pulse in Figure 6.2 would
generate a single area packet with rise_number=2 indicating that the pulse has two rises.

byte
0 1 2 3 4 5 6 7

0 area eflags time

The pulse event packet

The pulse packet combines fields from the rise and area packets. The pulse packet contains
a fixed number of slots, controlled by the max_rises setting, to record rises. The rise_number

field indicates how many of rise slots were filled.

55

byte
0 1 2 3 4 5 6 7

0 size reserved eflags time

1 area length pre_trigger

 pulse header

16 height rise_time minimum ptime

...

height rise_time minimum ptime

 rises

The dot product event packet

Setting packet=trace and trace=dot_product adds a dot product field to a pulse packet.
The packet does not carry a sequence record but uses the trace subsystem to calculate the
mathematical dot product of a trace with a template created by averaging over many pulses,
see section 5.4.3 for details.

byte
0 1 2 3 4 5 6 7

0 size tflags eflags time

1 area length pre_trigger

 pulse header

16 height rise_time minimum ptime

...

height rise_time minimum ptime

 rises

reserved dot_product

5.4.3 Event packets carrying traces

All packets in this section use the packet=trace setting and carry a record of a sequence called
a trace. The following registers control how the sequence is recorded

sequence selects the sequence to record.
stride sets the number of samples to skip in the sequence between each recorded sample.

For example, setting stride=1 records every second sample of sequence.
length sets the number of samples to record.
pre_trigger sets the number of samples to record prior to the timing point.

Trace flags

Each trace packet contains a two byte tflags field with details of the trace and settings used
during capture.

first byte

56

bit
04567

resv Mrise Mpulse stride

second byte
bit

034567

trace sequence offset

where

Mrise: is true if more than one rise was detected in the trace.
Mpulse: is true if more than one pulse was detected in the trace.
stride: the stride setting used.
trace: the trace setting, ie the type of this trace.
sequence: the sequence setting, ie which sequence is recorded in the trace.
offset: the offset from the start of the packet to the first sample in the trace. The offset in

bytes is 8*offset.

The average trace template

Setting trace to average uses the dot product entity to accumulate an average of the selected
sequence over 216 traces. The number of pulses averaged over is 2AVERAGE_N where AVERAGE_N is
a VHDL generic and can be changed. Any traces that contain multiple rises are not included
in the averaging process. The average template can be used in techniques that reduce the
uncertainty in photon number analysing traces, see section 4.1.

The average template in retained in memory and can be used with trace=dot_product

or dot_product_trace event packets to return the dot product of a trace with the stored
template. The result is returned in the dot_product field

dot_product =

length−1∑
n=0

a[n]y[n], (5.1)

where length sets the length of the trace, a is the stored average template and y is selected
with the sequence setting.

byte
0 1 2 3 4 5 6 7

0 size tflags eflags time

8 multi_pulse multi_peak

 Average header

16 sample[0] sample[1] sample[2] sample[3]

...

sample[n-3] sample[n-2] sample[n-1] sample[n]

 Average sequence

57

The fields multi_pulse and multi_peak count the number of traces rejected because multiple
pulsestart or risestart signals occurred while capturing the sequence.

The pulse trace

Setting trace=pulse adds a sequence record to a pulse event packet.
byte

0 1 2 3 4 5 6 7

24 size tflags eflags time

32 area length pre_trigger

 pulse header

48 height rise_time minimum ptime

...

height rise_time minimum ptime

 rises

sample[0] sample[1] sample[2] sample[3]

...

sample[n-3] sample[n-2] sample[n-1] sample[n]

 sequence record

The dot product trace

Setting trace=dot_product_trace adds a sequence record to a dot_product event packet.
byte

0 1 2 3 4 5 6 7

24 size tflags eflags time

32 area length pre_trigger

 pulse header

48 height rise_time minimum ptime

...

height rise_time minimum ptime

 rises

reserved dot_product

sample[0] sample[1] sample[2] sample[3]

...

sample[n-3] sample[n-2] sample[n-1] sample[n]

 sequence record

5.4.4 Event packet fields

Timer sequences

Timer sequences are 16 bit and saturate at 216 − 1.

58

pulsetimer is set to 1 after each pulsestart otherwise it is incremented each tick of the sample
clock. It counts time since the start of the pulse.

risetimer is set to 1 after each stamprise otherwise it is incremented each tick of the sample
clock. It counts time since the timestamp in the time field.

Fields

size: the size of the event packet in bytes.
tflags: flags relating to traces, see section 5.4.3.
eflags: flags relating to all events, see subsection 5.4.1.
time: the relative timestamp for this event, see section 5.3.
area: (pulse_area[f−

pulse]) the area of the pulse above pulse_threshold, see Equation 6.6.
Note that event packets with an area field will be dumped when pulse_area[f−

pulse] is less
than or equal to the area_threshold setting.

length: (pulsetimer[f
−
pulse]) the length of the pulse ie the time between f+

pulse and f−
pulse.

pre_trigger: the pre_trigger setting used to capture the trace. Undefined for event packets
without a trace.

height: (height[s−
0]) the height of the rise. How the measurement is made is dependent on

the height setting, see Equation 6.5.
rise_time: the time from the timing point to the measurement in the height field, rise_time

is dependant on the height setting.

rise_time =

f[s−

0] height = peak

f[f+
high] height = cfd_high or cfd_height

f[s+
max] height = max_slope

minimum: (minima[s+
0]) the effective value of f at the start of the rise, see Equation 6.3.

ptime: used in pulse based packets which can measure multiple rises, ptime is the pulsetimer

value when stamprise was true for the rise. The timestamp for each rise is time+(ptime−
ptime0), where ptime0 is the value of the ptime field for the first rise.

dot_product: the dot product of the trace with the average template stored in RAM, see
section 5.4.3

59

Chapter 6

The measurement pipeline

6.1 Input stage

The input stage is controlled by registers in the channel group.
The input multiplexer, controlled by the adc_select register, can connect any ADC output

to the input of any channel pipeline. Before entering the pipeline the selected ADC sequence
can be delayed by delay clock periods to temporally align it with other channels. The processor
expects rising detection pulses the invert register can be used to multiply the selected ADC
sequence by −1 if required. The output sequence for the stage is:

rawin (14 bit signed) Delayed and polarity corrected ADC output selected to drive this pro-
cessing channel.

6.2 Baseline correction

Pulse measurements (Figure 2.1) are relative to a baseline assigned the value 0. The unipolar
nature of the pulses makes averaging, including AC coupling, inaccurate and dependant on the
optical input power. Registers in the baseline group control a minimal implementation of a
dual buffered MCA that tracks the mode of the rawin sequence which estimates the baseline
value. The baseline MCA can only track the mode when it is within 2040 of 0, the offset

register is used to bring the mode close to 0. The input for the baseline MCA is rawDC =

rawin − offset.
In order to track changes in the distribution of rawDC the buffers must be regularly cleared,

one buffer is cleared every time_constant clocks and the buffer that is cleared is alternated.
Each buffer exposes the value of the bin with the highest frequency (mode) and its frequency
(count). A buffers estimate of the baseline (rawbc) is updated to mode whenever count changes
and count > count_threshold, if new_only is true then mode must also have changed from
it previous value for the update to occur. The baseline estimate rawBC is the average of the
individual rawbc from each buffer.

60

The 14.0 bit rawBC is sign extended to 16 bit the left shifted 3 bits to form the 16.3 bit

output sequence:

raw The raw baseline corrected TES detection signal.

6.3 Digital filtering

A useful property of a linear time invariant system is that its behaviour is completely described
by its response to an impulse. The system output given any input is the convolution input and
the systems impulse response. In signal processing this property is exploited to create filters
by engineering an impulse response, called the filter kernel, that describes an system with some
desired frequency response. linear time invariant system theory is well developed and underpins
DSP. Many algorithms and software solutions exist for the design and analysis of digital filters.

For discrete time FIR filters convolution is a sum

y[n] =
N−1∑
k=0

hkx[n− k]

where x[n] is the input sequence, y[n] the output sequence and hk the coefficients of a kernel
of length N , these types of filters have a linear phase response and a group delay of K = N−1

2

samples.
Many FPGAs contain multiply and accumulate resources designed to multiply the signal

by the filter coefficients and accumulate the partial products of the convolution which makes
implementation in hardware relatively straight forward. Xilinx calls these resources DSP48E
and there are columns og these hard cores through out the FPGA. Fast routing exists between
each DSP48E in a column so filters that can be implemented within a single column can be
clocked at higher frequencies which makes timing closure easier to achieve. The kernel lengths
have been chosen to take advantage of this.

6.3.1 DSP stage

The current implementation uses two chained FIR filter stages with kernels that can be recon-
figured from the host without reconfiguring the FPGA.

The first stage FIR filter is configured as a low-pass filter to remove high frequency noise
from raw, has N = 142 and expects a symmetric kernel consisting of 24.28 bit coefficients. The
raw first stage 48.31 bit output sequence is rounded to 16.3 bits (convergent rounding to even)
and on overflow or underflow saturates. This rounded sequence forms input into the second
stage and a copy is delayed to compensate for the second stage group delay to become the first
stage output sequence.

The second FIR filter stage has N = 23 and expects an anti-symmetric kernel with 25.25 bit

coefficients configured to differentiate its input and its raw 46.28 bit output sequence rounded
to 16.3 bits (convergent rounding to even) with overflow and underflow leading to saturation.

61

0 20 40 60 80

Frequency (Mhz)

−120

−100

−80

−60

−40

−20

0

A
m

p
li

tu
d

e
(d

B
)

First stage

0 20 40 60 80

Frequency (Mhz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
m

p
li

tu
d

e

Second stage

Figure 6.1: Default filter amplitude responses used during the preliminary testing, see chapter 3:
The first stage is an equi-ripple low pass filter with a 3 db cutoff frequency of ∼1.5MHz. The
second stage is configured as a smooth noise robust differentiator [Hol08] designed for a smooth
transition between the ideal differentiator response (red dashed line) at low frequencies and an
open circuit response (x-axis) at high frequencies to suppress noise.

The amplitude responses of both stages configured with the default kernels are shown in
Figure 6.1. The stage outputs include a copy of rawBL delayed to match the group delay of
both filters, the first stage output is also delayed to compensate for the second stage delay, so
that the output sequences have the correct temporal alignment. The output sequences are:

raw The raw TES detection sequence.
f The filtered detection sequence. This is raw after processing by the the first stage filter.
s The slope of f. This is f after processing by the second stage filter.

62

6.4 Measurement

Measurement is controlled by registers in the event and cfd groups. The measurement sub-
system processes f and s in two phases. Phase one identifies rises in f using zero crossing of s

and generates the firstrise, armed and above signals (Figure 6.2). Phase one also generates
the constant fraction sequences cflow, cfhigh and the maximum slope sequence smax. At the
end of each rise in phase one sequences and signals are captured and added to a FIFO queue
(Figure 6.3).

0

crossing
signals

above false
true

armed false
true

firstrise false
true

pulse_threshold

slope_threshold

s
f

s+slope

f+pulse

f−pulse

s+0
s−0

Figure 6.2: Rises: Zero crossings of s are used to identify rises in f. A rise is sub-sequence
of f that starts at s+

0 and ends at the next s−
0 . A firstrise is a rise that starts below

pulse_threshold. The detector is armed when s crosses slope_threshold and is reset
after the end of the rise. The above sequence is true when f is above pulse_threshold.
pulse_threshold. Markers on the crossing signals line indicate where the crossings are true.

Phase two acts on delayed versions of f and s and dequeues the values captured in phase
one at the start of the delayed rises. This provides phase two with look-ahead information
about the whole rise at its start. Look-ahead allows level crossings in phase two based on CFD
thresholds that are constant fraction of the rise height and a level crossing at the maximum
slope during the rise. A level crossing is true at the first time in a rise that the sequence is
greater than or equal to the threshold. With Look-ahead phase two can determine if a rise is
a detection at its start and prepare the packet engine FSMs to fill fields in the event packet.

63

0

crossing
signals

above false
true

armed false
true

cfvalid false
true

pulse_threshold

slope_threshold

s
f

s−0
cflow

cfhigh

smax

Figure 6.3: Phase one measurements: Two constant fraction sequences, cfhigh and cflow, and
a maximum slope sequence, smax are generated (see text). At the end of each rise values are
captured (circle markers) and input into a queue to be used in phase two (Figure 6.4).

Generation of the constant fraction sequences, cflow and cfhigh, is controlled by the fraction

and rel2min settings.

cfhigh[n] =(f[n]− minima[n])× (1− fraction) + minima[n] (6.1)

cflow[n] =(f[n]− minima[n])× fraction + minima[n] (6.2)

where

minima[n] =

0 when firstrise[n] and not rel2min

f[s+
0] otherwise

(6.3)

When firstrise is true and rel2min is false a minima of 0 is used in the constant fraction
calculation this can generate cflow sequences that are less than f for the entire rise, producing
phase two thresholds that can never be crossed. The signal cfvalid[n] = cflow[n] ≥ f[n]monitors
this condition. When rel2min is true the true minima, f[s+

0], is used and the phase two
thresholds can always be crossed.
The maximum slope sequence is

smax[n] =

s[n] s±
0 [n]

max (s[n], smax[n− 1]) otherwise

64

0

crossing
signals

starts

willcross false
true

detection false
true

cfdvalid false
true

willarm false
true

firstrise false
true

pulse_threshold
slope_threshold

timing=

thresholds

s

f

s+slope

f+pulse

f−pulse

s+0

s−0
risestart

pulsestart

pulse_threshold
slope_threshold
max_slope
cfd_low

low

high

max

Figure 6.4: Measurement phase two: Phase two operated on delayed versions of f and s. Values
captured in phase one are de-queued at the start of each delayed rise (circle markers) creating
the willcross, willarm and cfdvalid signals and the low, high and max thresholds. The point
during a rise that is timestamped is determined by the timing setting and the various timing
points appear as x’s on the starts line. A rise is a detection and can generate an event packet
when at its start both willcross and willarm are true, if timing=cfd_low cfdvalid must also be
true. The risestart signal is generated at the start of each detection and the pulsestart signals
the start of a detection that is also a first rise.

Phase two operates on delayed versions of f, s the delay time is set by the VHDL generic
CFD_DELAY. At the start of each rise in phase two values captured and queued at the end of the
rise in phase one are de-queued. When the time between the start and end of a rise exceeds
CFD_DELAY the values have not been captured by phase one when phase two tries to de-queue
them. This generates a cfd_overrun which is flagged in the next tick and counted as a lost
event.
The following de-queued signals are false outside of a rise:

willcross is the value above will have at the end of the rise.
willarm is the value armed will have at the end of the rise.
cfdvalid is the value cfvalid will have at the end of the rise.

The de-queued thresholds only change at the start of a rise:

low is the value cflow will have at the end of the rise and is the low CFD threshold with level
crossing signal f+

low.

65

high is the value cfhigh will have at the end of the rise and is the high CFD threshold with
level crossing signal f+

high.
max is the maximum slope during the rise and the level crossing signal is s+

max.

The timing setting selects which signal drives risestamp indicating when the timestamp
should be applied during the rise (see Figure 6.4).

risestamp =

f+
pulse when firstrise

f+
low otherwise

timing = pulse_threshold

s+
slope timing = slope_threshold

s+
max timing = max_slope

f+
low timing = cfd_low

(6.4)

timing=pulse_threshold is a special case because the threshold can only be crossed by rises
that start below it, ie a first rise.

The height sequence is captured by the packet engine as the height field in event packets

height =

f height = peak

high height = cfd_high

high − low height = cfd_height

max height = max_slope

(6.5)

The pulse_area sequence is captured by the packet engine as the area of f above
pulse_threshold in the area field.

pulse_area[n] =
n−1∑

m=f|+pulse

f[m]− pulse_threshold (6.6)

Two measurements are performed on f and s that don’t appear in an event packet but can
be captured by the MCA, the area and extreme value of the sequences between zero crossings.

yarea[n] =
n−1∑

m=y|±0

y[m]

yextrema[n] =

y[n] y±
0 [n]

extreme (y[n], yextrema[n− 1]) otherwise

where

extreme(a, b) =

max(a, b) y|+0 > y|−0
min(a, b) otherwise

66

and y is either f or s, creating farea, fextrema, sarea and sextrema sequences available for input into
the MCA. When triggered at the appropriate zero crossings the MCA outputs the distribution
of areas or extreme values of the selected sequence between zero crossings.

67

Appendix A

Registers

Communication with the FPGA registers is via a RS232 serial connection. The low level serial
protocol is described in section A.2 and the underlying FPGA address map is presented in
section A.3.

A.1 Python Interface

High level register access is provided by a client written in Python. This client can either be
used remotely, by connecting to the ZeroMQ socket for the register server running on the FPGA
host computer, or directly from the host via a serial port. The client communicates with the
FPGA using the protocol described in section section A.2 to access the hardware address map
in section section A.3.

To use the client it must first be imported from the tes package and instantiated

>>> from tes.registers import Registers

>>> r = Registers('server address')

the variable r now references an instance of the client object.
Registers are arranged in functional groups and r.group.register accesses a register in

the group, with the exception of registers in the global group which are accessed without a
group name r.register.

All groups except the global and mca group support indexing in order access a register for
a particular channel, both slicing and fancy indexing are supported and if the index is omitted
all channels are referenced. The indexed groups also provide Pythons iterable interface allowing
entire register groups to be accessed using dictionaries.

For example,

68

>>> r.event[0].pulse_threshold=1200

sets the event.pulse_threshold register from the event group for channel 0 to 1200 and

>>> r.event[0].pulse_threshold

1200

reads event.pulse_threshold for channel 0.
Omitting the index references all channels,

>>> r.event.pulse_threshold=23

>>> r.event.pulse_threshold

[23, 23, 23, 23, 23, 23]

first sets event.pulse_threshold for all channels to 23 then reads all channels returning a
python list of register values. A list can also be used to to set registers with

r.event.pulse_threshold=[1, 2, 3, 4, 5, 6, 7, 8]

setting each channel to the corresponding value in the list. A subset of channels can be refer-
enced using slicing or fancy indexing

>>> r.event[0:2].pulse_threshold=42 # slicing

>>> r.event[0,1].pulse_threshold=42 # fancy indexing

both set the event.pulse_threshold for channels 0 and 1 to 42, similarly

>>> r.event[0:2].pulse_threshold=[23, 42]

sets channel 0 to 23 and channel 1 to 42.
An entire group can be read as a dictionary and

69

>>> dict(r.event[0,1])

{'area_threshold': [1808, 10000],

'enable': [False, False],

'height': [<Height.peak_height: 0>, <Height.peak_height: 0>],

'max_peaks': [0, 0],

'packet': [<Event.peak: 0>, <Event.peak: 0>],

'pulse_threshold': [23, 42],

'slope_threshold': [512, 512],

'timing': [<Timing.cfd_low: 2>, <Timing.cfd_low: 2>]}

returns a dictionary of register values from the event group for channels 0 and 1, this mechanism
can be used to duplicate settings,

>>> r.event[1]=dict(r.event[0])

copies the settings for the event group from channel 0 to channel 1.
The client also provides an iterator over all registers and

>>> dict(r.all)

outputs a dictionary with an entry for every register. The tes.register module also contains
two methods for loading and and saving register dictionaries as human readable YAML files

>>> from tes.registers import load,save

>>> save(dict(r.all), filename)

A.1.1 Notation

Register descriptions have the following format

group.register access, binary type:size (python type)
Register description.

Where access is either Read-only or strobe and if no access is given read-write is implied. A
strobe ignores the data written to it but performs some action, for example see update. The
binary type:size field refers to attributes of the underlying hardware register and links to it in

70

the address map in section A.3. The python type for the register is given in the description and
maybe a enumerated type that subclasses tes.base.VhdlEnum which is a subclass of IntEnum.
The description of enumerated types has the following format:

0: name0 Description.

1: name1 Description.

2: …
and the register can be set using the int value, the name as a string or an instance of a VhdlEnum

subclass, reading the register always returns an instance of the Vhdlenum subclass. The python
type field indicates the package path for importing the VhdlEnum subclass if required.

A.1.2 Global registers

The global group has no indexing.

hdl_version read-only, unsigned:24 bit (str)
Returns a string containing the hexadecimal value of the short SHA-1 for the git commit
of the HDL code.

cpu_version read-only, unsigned:32 bit (str)
Returns a string containing the date and time the central CPU code was assembled as
“day-month-year hour:minute”.

channel_count read-only, unsigned:8 bit (int)
Returns an int containing the number of processing channels instantiated in the FPGA.

adc_chips read-only, unsigned:8 bit (int)
Returns an in containing the number of dual channel ADC chips attached attached to the
FPGA.

adc_enable unsigned:8 bit (int)
An integer that enables the ADC channels corresponding to the set bits, disabled channels
are put in low power mode. See the adc.enable register to enable on a per channel basis.

event_enable unsigned:8 bit (int)
An int event transmission for the channels corresponding to the set bits. See the event.enable

register to enable on a per channel basis.
tick_period unsigned:32 bit (int)

An int that sets the time (4ns clock pulses) between tick events.
tick_latency unsigned:32 bit (int)

An int that contains the maximum time (4ns clock pulses) to wait after a tick before
flushing the event buffer up to the next tick. This effectively sets a maximum latency for
tick events in the output stream.

window unsigned:32 bit (int)
An int setting the time window (4 ns clock pulses) used in setting the new bit in eflags

71

as an aid in determining coincidence between events.
mtu unsigned:32 bit (int)

An int setting the maximum number of bytes in transmitted Ethernet frames (max 1496).
ad9510_status 1 bit (bool)

Boolean controlling the status pin on the AD9510 clock generator chip on the FMC108
(see the AD9510 data sheet).

vco_power_en 1 bit (bool)
Boolean controlling the power enable pin on the AD9510 clock generator chip (see AD9510
data sheet).

fmc read-only, 1 bit (bool)
Boolean indicating that the FMC108 digitiser card is connected to the FPGA mezzanine
connector (FMC) connector and recognised.

fmc_power read only, 1 bit (bool) Indicates FMC108 card is present and powered up.
fmc_internal_clock 1 bit (bool) The state of internal clock pin on the FMC108 (see the

AD9510 datasheet).
mmcm_locked Read only, 1 bit (bool) Indicates FPGA multi-mode clock manager (MMCM)

tile is locked to FMC108 clock from the first AD9510.
iodelay_ready Read only, 1 bit (bool) Indicates the FPGA IODELAY controller for inputs

from ADCs is initialised.

A.1.3 MCA group

The MCA group has no indexing.

mca.lowest_value signed:32 bit (int)
Values < lowest_value are placed in the underflow bin (bin[0]).

mca.ticks unsigned:32 bit (int) Sets how many ticks each histogram is accumulated over,
see tick_period.

mca.value unsigned:4 bit (tes.mca.Value)
Selects the MCA input sequence.

0: disabled Disables the MCA.

1: f (f) the filtered TES sequence.

2: f_area (farea) the area of f between zero crossings.

3: f_extrema (fextrema) the extreme value of f between zero crossings

4: s (s) the slope of f.

5: s_area (sarea) the area of s between zero crossings.

6: s_extrema (sextrema) the extreme value of s between zero crossings.

7: pulse_area (pulse_area) the area of f above the pulse_threshold setting.

8: raw (raw) the raw unfiltered TES sequence.

72

9: cfd_high (cfdhigh) the high CFD threshold.

10: pulse_timer (pulsetimer) the time since the rising zero crossing of s at the start of a
pulse, see section 5.4.4.

11: rise_timer risetimer the time since the timestamp was applied to a rise.
mca.trigger unsigned:4 bit (tes.mca.Trigger)

The sequence selected by value is sampled into the histogram when trigger and qualifier

are both true.

0: disabled disables the MCA.

1: clock always trigger.

2: pulse_t_pos (f+
pulse) rising crossings of pulse_threshold by f.

3: pulse_t_neg (f−
pulse) falling crossings of pulse_threshold by f.

4: slope_t_pos (s+
slope) rising crossings of slope_threshold by s.

5: f_0xing (f±
0) zero crossing of f.

6: s_0xing (s±
0) zero crossings of s.

7: s_0xing_pos (s+
0) rising zero crossings of s.

8: s_0xing_neg (s−
0) falling zero crossings of s.

9: cfd_high (f+
high) rising crossings of the high CFD threshold by f.

10: cfd_low (f+
low) rising crossings of the low CFD threshold by f.

11: max_slope (s+
max) the first point in the rise with maximum slope.

mca.qualifier unsigned:4 bit (tes.mca.Qualifier)
The sequence selected by value is sampled into the histogram when trigger and qualifier

are both true.

0: disabled always false, no triggers qualify.

1: all always true all triggers qualify.

2: valid_rise (validrise) true during rises that qualify as a detection, see Figure 6.4.

3: above_area true when pulse_area > area_threshold.

4: above (above) true when f > pulse_threshold.

5: will_cross (willcross) true during a rise were f will cross pulse_threshold.

6: armed (armed) becomes true when s crosses slope_threshold during a rise and re-
mains true till the end of the rise.

7: will_arm (willarm) true during rises where s will cross slope_threshold.

8: rise true from a rising zero crossing of s to the next falling zero crossing.

9: valid_rise1 true during a valid first rise.

10: valid_rise2 true during rises that have rise_number=1, ie a valid second rise during
a pulse.

73

11: valid_rise3 true during rises that have rise_number=2, ie a valid third rise in a
pulse.

mca.channel unsigned:3 bit (int)
The channel to analyse.

mca.bin_n unsigned:5 bit (int)
Sets the width of histogram bins to 2bin_n.

mca.last_bin unsigned:14 bit (int)
The bin used for overflows, the number of bins in the histogram is last_bin+1 including
the overflow and underflow bins.

mca.update strobe (bool)
Update the MCA registers at the next tick where a buffer is free.

mca.update_on_completion strobe (bool)
Update the MCA registers after the current buffer has completed its ticks and a buffer
is free.

A.1.4 ADC group

The number of channels in the ADC group is 2∗adc_chips and this value is accessable through
the client instance variable adc_channels.

adc.enable 1 bit (bool)
Sets or clears the bit corresponding to this channel in the adc.adc_enable register. When
False the ADC is put in a low-power mode.

adc.pattern unsigned:3 bit (int)
Sets the type of ADC test pattern. See the ADS62P49 datasheet.

adc.pattern_low unsigned:8 bit (int)
The low byte of the of the custom test pattern See the ADS62P49 datasheet.

adc.pattern_high unsigned:6 bit (int)
The upper 6 bits of the custom test pattern. See the ADS62P49 datasheet.

adc.gain unsigned:4 bit (int)
The gain of the ADC input stage, 0 to 6 dB in 0.5 dB steps. See the ADS62P49 datasheet.

A.1.5 Channel group

The number of channels in the channel group is channel_count and this value is accessible
through the client instance variable dsp_channels.

channel.cpu_version Read only, unsigned:32 bit (str)
Date and time the channel CPU code was assembled. Same format as the main_cpu

register.
channel.adc_select unsigned:8 bit int

74

Selects the ADC input for the channel.
channel.invert 1 bit (bool)

Multiply the selected ADC output by −1.
channel.delay unsigned:16 bit The delay applied (4ns clock pulses) the selected ADC output

is delayed before entering the measurement pipeline.

A.1.6 Baseline group

The number of channels in the baseline group is channel_count and this value can be accessible
through the client instance variable dsp_channels.

baseline.offset signed:16 bit (int)
The value of the offset register is subtracted from the selected ADC output to correct
any DC offset.

baseline.time_constant unsigned:32 bit (int)
The period (4ns clock pulses) that buffers in the baseline MCA are cleared the buffer that
is cleared alternates.

baseline.threshold signed:16 bit (int)
offet corrected ADC values that are greater than threshold are not included in the
baseline estimate. (may not work use 0xFFFF to be safe)

baseline.count_threshold unsigned:32 bit (int)
The most frequent bin of the baseline MCA is only included in the baseline estimate when
its frequency is greater than count_threshold.

baseline.new_only 1 bit (bool)
When true the baseline MCAs most frequent bin is included in the baseline estimate only
when the bin changes, otherwise it is also included when it’s frequency changes.

baseline.dynamic 1 bit (bool)
When true the baseline estimate is subtracted from the offset corrected ADC signal.
This effectively turns the baseline correction on and off.

A.1.7 CFD group

cfd.fraction unsigned:17 bit (float)
The constant fraction used in the CFD process to calculate cflow and cfhigh.

cfd.rel2min 1 bit (bool)
When False the calculation of cflow and cfhigh use the true minimum, f[s|+0]. Otherwise
a minimum of 0 is used for first rises.

A.1.8 Event group

event.enable 1 bit (bool)

75

Sets/clears the bit corresponding to this channel in the global event_enable register and
enables/disables event packet transmission from this channel.

event.packet unsigned:2 bit (tes.base.Detection)
Sets the type of event packet generated by this channel, see section 5.4

0: rise a rise packet.

1: pulse a pulse packet.

2: area an area packet.

3: trace the packet is determined by the trace setting.
event.trace unsigned:2 bit (tes.base.TraceType)

Sets the type of sequence recorded. Note packet must be set to trace, see subsection 5.4.3.

0: pulse a pulse packet that includes a record of trace_sequence.

1: average accumulates a template that is the average of a number of pulses then returns
the template (see section 5.4.3).

2: dot_product a pulse packet that includes a dot product field containing the dot
product of trace_sequence with the average template. NOTE: this packet does not
contain a sequence record. (see section 5.4.3).

3: dot_product_trace same as dot_product but includes a record of trace_sequence.
event.trace_sequence unsigned:2 bit (tes.base.Sequence)

Selects the sequence captured in traces.

0: default f the filtered detection sequence.

1: raw raw the raw detection sequence.

2: f f the filtered detection sequence.

3: s s the slope f.
event.trace_stride unsigned:5 bit (int)

Sets the number of samples skipped when recording trace_sequence. For example, if
stride=1 the trace will contain {sample[0], sample[2], sample[4], …} of trace_sequence.
NOTE: the sample at the timing point is always included.

event.trace_pre unsigned:5 bit (int)
Sets the number of samples in a trace prior to the timing point.

event.trace_length unsigned:13 bit (int)
The number of samples to capture in a trace.

event.timing unsigned:2 bit (tes.base.Timing)
Selects the point a the rise that generates the timestamp (see Equation 6.4 and Figure 6.4)

0: pulse_threshold when f crosses pulse_threshold for first rises otherwise when f

first equals or exceeds the low CFD threshold during the rise.

1: slope_threshold when s crosses slope_threshold.

2: cfd_low when f first equals or exceeds the low CFD threshold during the rise.

76

3: slope_max when s first equals its maximum value in the rise.
event.max_rises unsigned:4 bit (int)

The number of rise slots in a pulse based packet is max_rises + 1.
event.height unsigned:2 bit (int)

Selects the the sequence that drives the height sequence. The height sequence is captured
into the height field of an event packet by the packet engine.

0: peak height = f

1: cfd_high height = high. Note this is the high CFD threshold.

2: cfd_height height = high − low the difference between the high and low CFD
thresholds.

3: max_slope height = max.
event.pulse_threshold unsigned:16 bit (int)

For a rise to be considered a detection and produce an event packet f must be above
pulse_threshold at the end of the rise and s must have exceeded slope_threshold

during the rise.
event.slope_threshold unsigned:16 bit (int)

For a rise to be considered a detection and produce an event packet f must be above
pulse_threshold at the end of the rise and s must have exceeded slope_threshold

during the rise.
event.area_threshold unsigned:32 bit (int)

The area sequence must be greater than or equal to area_threshold at the falling crossing
of pulse_threshold by f for the packet engine to produce an event packet that contains
an area.

A.2 Serial IO protocol

Register IO is currently transported over a RS232 serial connection via the Silicon Labs CP210x
USB to UART bridge on the ML605 development board. The protocol is compatible with the
AMBA AXI Lite specification, adopted by Xilinx and used widely in their IP cores, making
porting to a higher bandwidth transport bus reasonably painless.

Serial IO commands and responses are encoded as ASCII hex characters (0-9,A-F) and
terminated with a carriage return \r (0x0D).

Commands

Commands are 19 characters in length including the terminator

VVVVVVVVAAAAAAAA0C\r

77

where the 8 hex characters VVVVVVVV represent the 32 bit value to be written, AAAAAAAA the
32 bit register address and C one of the following command op-codes.

1 write register
2 read register
3 reset (warm reboot of FPGA)

The value part is ignored in a read command but must be present, and must be 00000000 for
a valid reset.

Responses

After a command is processed a 3 or 11 character response is returned

RC\r write response
VVVVVVVVRC\r read or reset response

where C is the op-code being responded to, R the response code and VVVVVVV the returned value.
The 4 bit response code indicates errors during the command

0123

non hex bad length AXI response

the non hex bit indicates that illegal characters were found in the command, the bad length

bit indicates the received command was not 19 characters long, and the 2 bit AXI response

flags any processing errors

00 OKAY

10 SLVERR

11 DECERR

where DECERR indicates an unknown address, and a SLVERR a command error, eg writing to a
read-only register. The value in a reset response is the FPGA features register.

Addresses

The most significant byte of the address is used by the main CPU to route the command to
various sub-systems within the design.

bit
02324272831

system channel 24 bit sub-system address

the system nibble is one of the following

0 channel CPUs
1 global registers
2 serial peripheral interface (SPI) bus

78

the channel nibble is ignored unless the system nibble is 0.

bit
02324272831

0 N 24 bit address in channel N

where N is the channel number.

bit
02324272831

1 X 24 bit global address

The SPI bus communicates with the chips on FMC108 mezzanine board, four ADS62P49
ADC chips and the AD9510 clock distribution chip. SPI address are of the form

bit
07812132324272831

2 X reserved MOSI SPI address

The SPI address is chip register address given in the data sheet and the master out slave in
(MOSI) field selects which chip(s) to communicate with

bit 8 ADS62P49 chip 0 (ADC channels 0 and 1)
bit 9 ADS62P49 chip 1 (ADC channels 2 and 3)
bit 10 ADS62P49 chip 2 (ADC channels 4 and 5)
bit 11 ADS62P49 chip 3 (ADC channels 6 and 7)
bit 12 AD9510 chip

79

A.3 Register address map

0x0N000000 channel CPU version (read-only)

031

channel.cpu_version

The 32 bit return value is formatted YMDDHHmm where each character represents a 4 bit nibble.
Y Year mod 16
M Month

DD Day
HH Hour (24-hour)
mm Minute

0x0N000001 event type

012347891031

reserved H MP T P

H event.height

MP event.max_peaks

T event.timing

P event.packet

0x0N000002 pulse threshold

0151631

reserved event.pulse_threshold

0x0N000004 slope threshold

0151631

reserved event.slope_threshold

80

0x0N000008 constant fraction
0161731

R reserved cfd.fraction

R cfd.rel2min

0x0N000010 area threshold
031

event.area_threshold

0x0N000020 channel delay

091031

reserved channel.delay

0x0N000040 baseline offset
0151631

reserved baseline.offset

0x0N000080 baseline time constant
031

baseline.time_constant

0x0N000100 baseline threshold
0151631

reserved baseline.threshold

81

0x0N000200 baseline count threshold
031

baseline.count_threshold

0x0N000400 baseline control
01231

reserved S N

N baseline.new_only

S baseline.subtraction

0x0N000800 channel input select

03431

reserved AS

AS channel.adc_select

0x10000000 main CPU version (read-only)

031

cpu_version

The 32 bit return value is formatted YMDDHHmm where each character represents a 4 bit nibble.
Y Year mod 16
M Month

DD Day
HH Hour (24-hour)
mm Minute

0x10000001 HDL version (read-only)

031

hdl_version

82

0x10000002 MCA
0347810111516293031

resv LB BN C T V

LB mca.last_bin

BN mca.bin_n

C mca.channel

T mca.trigger

V mca.value

0x10000004 MCA lowest value
031

mca.lowest_value

0x10000008 MCA ticks
031

mca.ticks

0x10000010 MTU
031

mtu

0x10000020 tick period

031

tick_period

83

0x10000040 tick latency

031

tick_latency

0x10000080 ADC enables
07831

reserved adc_enable

0x10000100 event enables
07831

reserved event_enable

0x10000200 FMC108 control
01231

reserved P C

C fmc_internal_clock

P vco_power_en

0x10000400 window
031

window

84

0x10000800 MCA qualifier

034731

reserved mca.qual1 mca.qual0

0x10002000 MCA update strobes

012331

reserved U C

C mca.update_on_completion

U mca.update

0x10800000 FPGA features (read-only)

0781516171819202131

res I M S P F adc_chips channel_count

F fmc

P fmc_power

S ad9510_status

M mmcm_locked

I iodelay_ready

85

Appendix B

Ethernet protocols

B.1 Ethernet frames

Measurement information is sent to the host computer from the FPGA over a dedicated point
to point Ethernet connection as raw Ethernet frames. A standard 16 byte Ethernet header is
present containing spoofed source and destination addresses which can safely be ignored. The
14 bytes before the length field are always in network byte order (big endian) while the byte
order of rest of the frame can be changed to match that of the host and is little endian by
default.

Two distinct streams are transmitted by the FPGA; the MCAstream carries the distributions
of measurement values as histograms output from the MCA; and the eventstream carries event
packets containing timestamped measurements of TES detection pulses. The ethertype field
indicates which stream the frame carries. An 8 byte protocol header follows the Ethernet header
and contains sequence numbers and fields describing the payload for frames in the event stream.

Ethernet Frame
byte

0 1 2 3 4 5 6 7

0 0x5A0102030405 0xDA01

8 0x02030405 ethertype length

 Ethernet header

16 frame_seq protocol_seq event_size event_type

}
Protocol header

24 payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

86

Ethernet header fields

ethertype: (big endian).
0x88B5 the frame is in the event stream.
0x88B6 the is in the MCA stream.

length: length in bytes of the valid part of the frame. Note this maybe less than the length
of the Ethernet frame which has a minimum length of 60 bytes.

Protocol header fields

frame_seq: incremented for each frame sent by the FPGA.
protocol_seq: independently incremented for each stream type and set to zero for header

frames.
event_size: the size in 8 byte chunks of the event packets forming the payload array.
event_type: (2 bytes) the type of event packet in the payload array.

0
012347

1 reserved trace

012347

reserved packet tick undef

When the tick bit is set the payload is a tick packet carrying a time stamp and er-
ror information and the other fields are undefined. Otherwise packet and trace are the
event.packet and event.trace settings that generated the packets in the payload.

Both event_type and event_size are only valid for frames in the eventstream.

B.2 The MCAstream ethertype=0x88B6

A complete histogram from the MCA can extend over multiple frames and eventstream frames
may be interspersed during the transmission of the histogram. Frames in the MCAstream
which have protocol_seq=0 are MCA header frames that contain register settings and other
information for the captured histogram. The MCA header is followed by histogram bin data
that generally extends over multiple frames. In each frame after the header the bin data starts
at byte 24 and protocol_seq is incremented.

87

byte
0 1 2 3 4 5 6 7

16 frame_seq 0 undefined undefined

}
Protocol header

24 size last_bin lowest_value

32 reserved most_frequent MCA_flags

40 total

48 start_time

56 stop_time

MCA header

64 bin[0] bin[1]

...
...

bin[n-1] bin[n]

 MCA data

B.2.1 MCA header fields

size: The total size of the histogram in bytes including the header and all bins.
last_bin: the mca.last_bin setting.
lowest_value: the mca.lowest_value setting.
most_frequent: The bin with the highest count.
MCA_flags: (4 bytes) contains register settings used to capture the histogram.

The bytes in transmission order are:
bit

07

reserved

bit
0347

mca.qual1 mca.qual0

bit
0347

mca.value mca.trigger

bit
0237

mca.bin_n mca.channel

total: The sum of all bins.
start_time: a 64 bit timestamp indicating when accumulation started.
stop_time: a 64 bit timestamp indicating when accumulation stopped.

B.3 The eventstream (ethertype=0xBB85)

Frame in the eventstream carry event packets (section 5.4) in three payload formats; the tick
payload contains a single tick packet; measurement payloads consist of an array of event

88

packets each containing measurements of a TES detection pulse; and trace payloads begin with a
single event packet as a header which is followed by a sequence record. Trace packets may extend
over multiple sequential frames that will never be interspersed with MCAstream frames The
header frame that starts with abn event packet is indicated by a 0 in the protocol_sequence

field. Each payload type can be identified by inspecting the event_type field for the frame.
The transport framer (section 5.2) guarantees each measurement payload array consists of

event packets of the same type and size and the packets are designed for optimum memory
alignment.

byte
0 1 2 3 4 5 6 7

16 frame_seq protocol_seq event_size event_type

}
Protocol header

24 event payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

B.3.1 The tick packet

Each event packet includes a 16 bit time field which records the number of 4 ns clocks since the
previous event in the stream, time saturates at 216 − 1. By setting the tick_period register
to less than 216 a continuously time-stamped detection record is acquired.

byte
0 1 2 3 4 5 6 7

0 tick_period tick_flags time

8 timestamp

16 ovrfl error cfd_err resv events_lost

}
error flags

tick_period (unsigned 32 bit) The tick_period setting for this tick.
tick_flags: (2 bytes)

bit
01237

0 undefined MF EL TL

bit
0127

1 undefined 1 undef

MF: the eventstream MUX time queue overflowed.
EL: the events_lost field is not zero.
TL: the tick framer overflowed.

89

time (unsigned 16 bit) The time since the previous event (saturates), see the time field.
timestamp: (unsigned 64 bit) The system time when this tick was generated.
ovrfl: 1 bit flags indicating that the packet engine for that channel overflowed since the last

tick. LSB is channel 0.
error: 1 bit flags indicating that the packet engine for that channel had a framing error since

the last tick. LSB is channel 0.
cfd_err: 1 bit flags indicating that CFD for that channel overran since the last tick. LSB is

channel 0.
events_lost: (unsigned 32 bit) The number of events lost since the previous tick.

90

Glossary

AD9510 Clock generation and distribution chip from Analogue devices. 72, 79, 91

ADS62P49 Dual channel 14 bit 250 Mhz ADC chip from Analogue devices. 74, 79, 91

detection a rise that ends with f above pulse_threshold and s has crossed slope_threshold

during the rise. 23, 77, 91

entity A VHDL functional unit fulfilling a similar role to a software subroutine or class in that
it enables code to be reused. It is analogous to a discrete chip with input and output
pins called ports. 49

event packet A packet containing measurement fields from a detection. , 8, 22, 24, 29, 42,
43, 54, 57, 58, 59, 65, 66, 77, 86, 88, 89, 91

eventstream An AXI stream of event packets carrying measurements of TES detection pulses.
47, 48, 49, 52, 53, 54, 86, 87, 88, 89, 92

fabric Ubiquitous FPGA resources arranged as a large array of cells covering most of the
FPGA chip’s die. Each cell contains low level digital components like registers (flip-flops)
and MUXs. Fabric resources are the most general an any circuit can be realised using
them. The large number of routing connections between the low level components in a
complex circuit built from fabric resources can limit maximum clock speed. 9

field A entry in a packet representing a value. , 49, 54, 55, 57, 59, 66, 91, 92

first rise a rise that starts below the pulse_threshold register setting. 50, 54, 65, 66, 73, 76

FMC108 An ADC mezzanine card containing 4 dual channel ADS62P49 ADCs and a AD9510
clock management chip. It is connected to the ML605 FPGA development board’s high
pin count FMX connector. 72

frame A structure used to transport packets to the host. A frame may contain multiple packets
or a fragment of a single packet. 49, 88, 89

91

framer A cross between a RAM and a FIFO, the input port allows random writing of fields
an a frame. The output port implements an AXI stream interface and when the frame is
committed it streams out, asserting last at the end of the frame. 49, 53, 54, 89, 92

generic A VHDL constant used during synthesis to control how an entity is implemented. ,
57, 65

hard core dedicated silicon resources in a FPGA performing a specific function. These are
effectively internal discrete chips performing functions like RAM, multiply and accumulate
for DSP filters, etc. 9

last An AXI stream signal asserted by the stream source to indicate the last transfer in a
packet. 49

MCAstream The AXI stream carrying histograms from the MCA. 52, 86, 87, 89

packet An ordered collection of fields carrying data, one field represents the length of the
packet. Packets are transported in which have a maximum length set by the MTU.
Multiple packets can be transported in a single frame or a single packet can be fragmented
across multiple frames depending on the packet length and the MTU. 49, 53, 55, 88, 91

packet engine An entity containing a framer and controlled by FSMs, it creates event packets
from measurements of TES output to produce an eventstream. 49, 52, 53, 54, 66, 77, 90

pile-up The long TES relaxation time leads to pile-up of detection pulses when another photon
is detected before the TES as fully recovered from a previous detection. 7

pulse a sub-sequence of f from the start of a valid rise to the next falling crossing of pulse_threshold

by f. 24, 29, 50, 59, 73

ready An AXI stream handshake signal asserted by the stream sink to indicate it is ready to
accept data. 49, 93

rise a sub-sequence of the f sequence that extends from a local minima to the following local
maxima. 22, 23, 24, 29, 41, 43, 50, 55, 57, 59, 73, 77, 91, 92

RS232 Ancient but simple protocol for serial communication. 68, 77

sequence An ordered list of integers. In this thesis sequences originate from quantisation of a
continuous voltage signal by an ADC. , 21, 22, 23, 24, 29, 30, 40, 41, 42, 49, 50, 60, 76,
89, 92

trace A sequence record of fixed length. 49, 76

92

transfer Data is transferred between between a source and a sink in a stream when the valid
and ready handshakes are both asserted. the amount of data transferred is the width of
the stream. 49, 54

valid An AXI stream handshake signal asserted by the stream source to indicate it has valid
data to write. 49, 93

VHDL A hardware definition language developed by the U.S. department of defence. , 9, 43,
57, 65

Xilinx Market leading manufacturer of FPGAs and developer of infuriating software tools.
10, 61, 77

ZeroMQ a high-performance asynchronous messaging library, with bindings for many popular
programming languages. 68

93

Acronyms

ADC analogue to digital converter. 21, 23, 24, 26, 28, 45, 48, 50, 60, 71, 72, 74, 75, 79, 91, 92

ADR adiabatic demagnetisation refrigerator. 2, 7, 26, 27, 28

AIC Akaike information criterion. 33, 44

AXI advanced extensible interface. 49, 52, 77, 91, 92, 93

CDF cumulative density function. 34, 35

CFD constant fraction discriminator. 20, 55, 63, 65, 66, 73, 75, 76, 77, 90

CPU central processing unit. 48, 71, 74

DSP digital signal processing. 9, 61, 92

EM Expectation Maximisation. 32, 33

EPR Einstein, Podolsky and Rosen. 14, 19

ETF electro-thermal feedback. 3, 4, 5

FIFO first in first out. 49, 63, 92

FIR finite impulse response. 23, 52, 61

FMC FPGA mezzanine connector. 72

FPGA field programmable gate array. 9, 10, 26, 28, 51, 61, 68, 72, 86, 87, 91, 92, 93

FSM finite state machine. 54, 63, 92

HDL hardware definition language. 9, 10

MCA multi-channel analyser. 24, 25, 28, 29, 30, 41, 42, 43, 45, 48, 49, 52, 60, 66, 67, 72, 73,
75, 86, 87, 92

ML Maximum Likelihood. 32, 33

94

MMCM multi-mode clock manager. 72

MOSI master out slave in. 79

MTU maximum transmission unit. 49, 92

MUX multiplexer. 48, 52, 53, 54, 89, 91

NIST National Institute of Standards and Technology. 2, 5, 45

PDF probability density function. 33, 34

PID proportional-integral-differential. 27

POVM positive-operator valued measure. 35, 37, 41, 42, 44

PTR pulse tube refrigerator. 27

RAM random access memory. 9, 49, 53, 59, 92

SPDC spontaneous parametric down-conversion. 19, 20

SPI serial peripheral interface. 78, 79

SQUID superconducting interference device. 3, 7

TES transition edge sensor. , 1, 2, 3, 4, 5, 6, 7, 8, 11, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30,
31, 32, 36, 40, 41, 42, 44, 45, 47, 48, 52, 53, 61, 62, 72, 86, 89, 91, 92

W-TES Tungsten transition edge sensor. 2, 5

95

Bibliography

[Aka98] Hirotogu Akaike. Information Theory and an Extension of the Maximum Likeli-
hood Principle. In Selected Papers of Hirotugu Akaike, pages 199–213. Springer
New York, New York, NY, 1998.

[BA57] D Bohm and Y Aharonov. Discussion of Experimental Proof for the Paradox of
Einstein, Rosen, and Podolsky. Phys. Rev., 108(4):1070–1076, November 1957.

[BA60] D Bohm and Y Aharonov. Further discussion of possible experimental tests for
the paradox of Einstein, Podolsky and Rosen. Il Nuovo Cimento, 17(6):964–976,
September 1960.

[BAB+15] S E Busch, J S Adams, S R Bandler, J A Chervenak, M E Eckart, F M Finkbeiner,
D J Fixsen, R L Kelley, C A Kilbourne, S J Lee, S H Moseley, J P Porst, F S
Porter, J E Sadleir, and S J Smith. Progress Towards Improved Analysis of TES
X-ray Data Using Principal Component Analysis. Journal of Low Temperature
Physics, 184(1-2):382–388, November 2015.

[Bac] Dave Bacon. Quantum Entanglement and Bell’s Theorem.

[Bel64] John Stewart Bell. On the Einstein Podolsky Rosen paradox. Physics,
1(3):195–200, 1964.

[BMG+07] Agata M Branczyk, Paulo E M F Mendonca, Alexei Gilchrist, Andrew C Doherty,
and Stephen D Bartlett. Quantum control of a single qubit. Physical Review A
(Atomic, Molecular, and Optical Physics), 75(1):012329, 2007.

[CHSH69] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed
Experiment to Test Local Hidden-Variable Theories. Physical Review Letters,
23(1):880–884, October 1969.

[CLFN11] Brice Calkins, Adriana E Lita, Anna E Fox, and Sae Woo Nam. Faster recovery
time of a hot-electron transition-edge sensor by use of normal metal heat-sinks.
Applied Physics Letters, 99(24):241114, 2011.

96

[DAB+07] D Drung, C Assmann, J Beyer, A Kirste, M Peters, F Ruede, and T Schurig.
Highly Sensitive and Easy-to-Use SQUID Sensors. IEEE Transactions on Applied
Superconductivity, 17(2):699–704, June 2007.

[DLR77] A P Dempster, N M Laird, and D B Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, January 1977.

[dW00] A T A M de Waele. Pulse-tube refrigerators: principle, recent developments, and
prospects. Physica B: Physics of Condensed Matter, 280(1):479–482, May 2000.

[EM] A Einstien and Born M. The Born-Einstien Letters, 1916-1955. Friendship, Poli-
tics and Physics in Uncertain Times. Times (Macmillan Science).

[Ens05] Christian Enss. Cryogenic Particle Detection. Topics in applied physics. Springer,
Berlin, 2005.

[EPR35] A Einstein, B Podolsky, and N Rosen. Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete? Phys. Rev., 47(10):777–780, May 1935.

[FFCM+00] E Figueroa-Feliciano, B Cabrera, A J Miller, S F Powell, T Saab, and A B C
Walker. Optimal filter analysis of energy-dependent pulse shapes and its appli-
cation to TES detectors. Nuclear Instruments and Methods in Physics Research
Section A, 444(1):453–456, April 2000.

[Fin] Arthur Fine. The Einstein-Podolsky-Rosen Argument in Quantum Theory.

[FP12] Alessandro Ferraro and Matteo G A Paris. Nonclassicality Criteria from Phase-
Space Representations and Information-Theoretical Constraints Are Maximally
Inequivalent. Physical Review Letters, 108(2):260403, June 2012.

[GDL+10] G G Gillett, R B Dalton, B P Lanyon, M P Almeida, M Barbieri, G J Pryde, J L
O’Brien, K J Resch, S D Bartlett, and A GWhite. Experimental Feedback Control
of Quantum Systems Using Weak Measurements. Phys. Rev. Lett., 104(8):080503,
February 2010.

[GHSZ90] Daniel M Greenberger, Michael A Horne, Abner Shimony, and Anton
Zeilinger. Bell’s theorem without inequalities. American Journal of Physics,
58(12):1131–1143, 1990.

[GVW+15] Marissa Giustina, Marijn A M Versteegh, Sören Wengerowsky, Johannes Hand-
steiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler,
Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W
Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E Lita, Lynden K Shalm, Sae Woo

97

Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger.
Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys-
ical Review Letters, 115(2):250401, December 2015.

[Hol08] Pavel Holoborodko. Smooth Noise Robust Differentiators, 2008.

[IH05] K D Irwin and G C Hilton. Transition-Edge Sensors. In Christian Enss, editor,
Cryogenic Particle Detection, pages 63–150. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[IHWM98] K D Irwin, G C Hilton, D A Wollman, and John M Martinis. Thermal-response
time of superconducting transition-edge microcalorimeters. Journal of Applied
Physics, 83(8):3978–3985, April 1998.

[Irw95] K D Irwin. An application of electrothermal feedback for high resolution cryogenic
particle detection. Applied Physics Letters, 66(15):1998–2000, April 1995.

[Jar84] Jon P Jarrett. On the Physical Significance of the Locality Conditions in the Bell
Arguments. Noûs, 18(4):569, November 1984.

[JNN13] J R Johansson, P D Nation, and Franco Nori. QuTiP 2: A Python framework
for the dynamics of open quantum systems. Computer Physics Communications,
184(4):1234–1240, April 2013.

[KLM01] E Knill, R Laflamme, and G J Milburn. A scheme for efficient quantum compu-
tation with linear optics. Nature, 409(6816):46–52, 2001.

[Lar98] Jan-Åke Larsson. Bell’s inequality and detector inefficiency. Physical Review A
(Atomic, 57(5):3304–3308, May 1998.

[LCP+10] A E Lita, B Calkins, L A Pellouchoud, A J Miller, and S Nam. Superconducting
transition-edge sensors optimized for high-efficiency photon-number resolving de-
tectors. In Mark A Itzler and Joe C Campbell, editors, SPIE Defense, Security,
and Sensing, pages 76810D–76810D–10. SPIE, April 2010.

[Lev44] Kenneth Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[LGM+12] Zachary H Levine, Thomas Gerrits, Alan L Migdall, Daniel V Samarov, Brice
Calkins, Adriana E Lita, and Sae Woo Nam. Algorithm for finding clusters with
a known distribution and its application to photon-number resolution using a
superconducting transition-edge sensor. Journal of the Optical Society of America
B, 29(8):2066–, August 2012.

98

[LGM+14] Zachary H Levine, Boris L Glebov, Alan L Migdall, Thomas Gerrits, Brice Calkins,
Adriana E Lita, and Sae Woo Nam. Photon-number uncertainty in a superconduct-
ing transition edge sensor beyond resolved-photon-number determination. Journal
of the Optical Society of America B, 31(10):20–B24, October 2014.

[LGPM15] Zachary H Levine, Boris L Glebov, Adam L Pintar, and Alan L Migdall. Abso-
lute calibration of a variable attenuator using few-photon pulses. Optics Express,
23(12):16372–, June 2015.

[Lin00] Mark Anton Lindeman. Microcalorimetry and the transition-edge sensor. Pro-
Quest Dissertations And Theses; Thesis (Ph.D.)–University of California, October
2000.

[LLCT+13] Antia Lamas-Linares, Brice Calkins, Nathan A Tomlin, Thomas Gerrits, Adri-
ana E Lita, Jörn Beyer, Richard P Mirin, and Sae Woo Nam. Nanosecond-scale
timing jitter for single photon detection in transition edge sensors. Applied Physics
Letters, 102(2):231117, June 2013.

[LMN08] Adriana E Lita, Aaron J Miller, and Sae Woo Nam. Counting near-infrared single-
photons with 95Opt. Express, 16(5):3032–3040, March 2008.

[LRN+05] A E Lita, D Rosenberg, S Nam, A J Miller, D Balzar, L M Kaatz, and R E
Schwall. Tuning of Tungsten Thin Film Superconducting Transition Temperature
for Fabrication of Photon Number Resolving Detectors. Applied Superconductivity,
IEEE Transactions on, 15(2):3528–3531, June 2005.

[McC05] D McCammon. Thermal Equilibrium Calorimeters - An Introduction. Cryogenic
Particle Detection, 9:1–, 2005.

[Mer85] N David Mermin. Is the moon there when nobody looks? Reality and the quantum
theory. Physics Today, 38(4):38–47, April 1985.

[Mig08] Alan Migdall. Correlated-Photon Metrology Without Absolute Standards. Physics
Today, 52(1):41–46, January 2008.

[MLC+11] Aaron J Miller, Adriana E Lita, Brice Calkins, Igor Vayshenker, Steven M Gruber,
and Sae Woo Nam. Compact cryogenic self-aligning fiber-to-detector coupling with
losses below one percent. Opt. Express, 19(10):9102–9110, May 2011.

[NCC+99] Sae Woo Nam, B Cabrera, P Colling, R M Clarke, E Figueroa-Feficiano, A J
Miller, and R W Romani. A new biasing technique for transition edge sensors
with electrothermal feedback. IEEE Transactions on Appiled Superconductivity,
9(2):4209–4212, June 1999.

99

[OZ01] Harold Ollivier and Wojciech H Zurek. Quantum Discord: A Measure of the
Quantumness of Correlations. Phys. Rev. Lett., 88(1):281, December 2001.

[Pai79] A Pais. Einstein and the quantum theory. Review of Modern Physics,
51(4):863–914, October 1979.

[SGdA+12] Devin H Smith, Geoff Gillett, Marcelo P de Almeida, Cyril Branciard, Alessandro
Fedrizzi, Till J Weinhold, Adriana Lita, Brice Calkins, Thomas Gerrits, Howard M
Wiseman, Sae Woo Nam, and Andrew GWhite. Conclusive quantum steering with
superconducting transition-edge sensors. Nat Commun, 3, January 2012.

[SMSC+15] Lynden K Shalm, Evan Meyer-Scott, Bradley G Christensen, Peter Bierhorst,
Michael A Wayne, Martin J Stevens, Thomas Gerrits, Scott Glancy, Deny R
Hamel, Michael S Allman, Kevin J Coakley, Shellee D Dyer, Carson Hodge,
Adriana E Lita, Varun B Verma, Camilla Lambrocco, Edward Tortorici, Alan L
Migdall, Yanbao Zhang, Daniel R Kumor, William H Farr, Francesco Marsili,
Matthew D Shaw, Jeffrey A Stern, Carlos Abellán, Waldimar Amaya, Valerio
Pruneri, Thomas Jennewein, Morgan W Mitchell, Paul G Kwiat, Joshua C Bien-
fang, Richard P Mirin, Emanuel Knill, and Sae Woo Nam. Strong Loophole-Free
Test of Local Realism*. Physical Review Letters, 115(2):250402, December 2015.

[WGR+08] Till J Weinhold, Alexei Gilchrist, Kevin J Resch, Andrew C Doherty, Jeremy L
O’Brien, Geoffrey J Pryde, and Andrew G White. Understanding photonic
quantum-logic gates: The road to fault tolerance. arXiv.org, August 2008.

[WJD07] H M Wiseman, S J Jones, and A C Doherty. Steering, Entanglement, Nonlocality,
and the Einstein-Podolsky-Rosen Paradox. Physical Review Letters, 98(1):140402,
April 2007.

100

	I Overview
	Introduction
	Transition edge sensors
	Small signal model
	Large signals
	Detector metrics

	Field programmable gate arrays

	Processor design
	Motivation
	The GHZ game
	Elements of reality
	EPR + Bohm (EPRB) and Bell's theorem
	Quantum correlations

	Design goals
	System overview
	The multi-channel analyser (MCA)

	Preliminary testing and analysis
	Test apparatus
	Preliminary performance analysis
	Data acquisition
	Dark noise
	Statistical modeling

	Discussion and conclusions
	Discussion
	Conclusions

	II Implementation Details
	Stream processing
	Notation and terminology
	The streams
	Stream transport

	The eventstream multiplexer
	The packet engine and event packets
	Event flags
	Short event packets
	Event packets carrying traces
	Event packet fields

	The measurement pipeline
	Input stage
	Baseline correction
	Digital filtering
	DSP stage

	Measurement

	Registers
	Python Interface
	Notation
	Global registers
	MCA group
	ADC group
	Channel group
	Baseline group
	CFD group
	Event group

	Serial IO protocol
	Register address map

	Ethernet protocols
	Ethernet frames
	MCA frames
	MCA header fields

	Eventstream frames
	The tick packet

